精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+b(a≠0),若
2
0
f(x)dx=2f(x0),x0>0
,则x0=
2
3
3
2
3
3
分析:根据定积分公式,求出f(x)的原函数F(x),通过计算F(2)-F(0)得到
2
0
f(x) dx=
8
3
a+2b
,再结合题意列出等式2(ax0 2+b)=
8
3
a+2b
,采用比较系数法,得到x0=
2
3
3
解答:解:∵
2
0
f(x) dx=
2
0
(ax2+b) dx=(
1
3
ax3+bx+c)
|
2
0
=
8
3
a+2b
,其中c为常数
∴2f(x0)=2(ax02+b)=
8
3
a+2b

从而2x02=
8
3
,得x02=
4
3

∵x0>0
x0=
2
3
3

故答案为:
2
3
3
点评:本题多项式函数为例,考查了定积分的求法和比较系数法求字母参数的值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案