(本小题满分12分)
已知函数,且。
(I)试用含的代数式表示;
(Ⅱ)求的单调区间;
(Ⅲ)令,设函数在处取得极值,记点,证明:线段与曲线存在异于、的公共点。
(I)
(Ⅱ)当时,函数的单调增区间为和,单调减区间为;
当时,函数的单调增区间为R;
当时,函数的单调增区间为和,单调减区间为。
(Ⅲ)证明见解析。
解法一:
(I)依题意,得
由得
(Ⅱ)由(I)得
故
令,则或
①当时,
当变化时,与的变化情况如下表:
+ | — | + | |
单调递增 | 单调递减 | 单调递增 |
由此得,函数的单调增区间为和,单调减区间为
②由时,,此时,恒成立,且仅在处,故函数的单调区间为R
③当时,,同理可得函数的单调增区间为和,单调减区间为
综上:
当时,函数的单调增区间为和,单调减区间为;
当时,函数的单调增区间为R;
当时,函数的单调增区间为和,单调减区间为
(Ⅲ)当时,得
由,得
由(Ⅱ)得的单调增区间为和,单调减区间为
所以函数在处取得极值。
故
所以直线的方程为
由得
令
易得,而的图像在内是一条连续不断的曲线,
故在内存在零点,这表明线段与曲线有异于的公共点
解法二:
(I)同解法一
(Ⅱ)同解法一。
(Ⅲ)当时,得,由,得
由(Ⅱ)得的单调增区间为和,单调减区间为,所以函数在处取得极值,
故
所以直线的方程为
由得
解得
所以线段与曲线有异于的公共点。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com