精英家教网 > 高中数学 > 题目详情
设P是椭圆
x2
4
+y2=1上任意一点,A是椭圆的左顶点,F1,F2分别是椭圆的左焦点和右焦点,则
PA
PF1
+
PA
PF2
的最大值为(  )
A、8B、16C、12D、20
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由椭圆
x2
4
+y2=1可得A(-2,0),F1(-
3
,0)
,F2(
3
,0)
.设P(2cosθ,sinθ)(θ∈[0,2π)).可得
PA
PF1
+
PA
PF2
=6(cosθ+
2
3
)2-
2
3
,再利用余弦函数与二次函数的单调性即可得出.
解答: 解:由椭圆
x2
4
+y2=1可得a=2,b=1,c=
a2-b2
=
3

∴A(-2,0),F1(-
3
,0)
,F2(
3
,0)

设P(2cosθ,sinθ)(θ∈[0,2π)).
PA
PF1
+
PA
PF2
=(-2-2cosθ,-sinθ)•[(-
3
-2cosθ,-sinθ)+
(
3
-2cosθ,-sinθ)]

=(2+2cosθ)•4cosθ+2sin2θ
=6cos2θ+8cosθ+2
=6(cosθ+
2
3
)2-
2
3

当且仅当cosθ=1时取最大值16.
故选:B.
点评:本题考查了椭圆的参数方程及其性质、数量积运算、余弦函数的单调性与二次函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
c
分别平行于x轴,y轴,z轴,他们的坐标各有什么特点?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(lg1+lg2+lg4+lg8+…+lg1024)•log210=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
4
+
y2
3
=1,其左准线为l1,右准线为l2,抛物线C2以坐标原点O为顶点,l2为准线,C2交l1于A,B两点.
(1)求抛物线C2的标准方程;
(2)求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在底面为正方形的四棱锥P-ABCD中,PA⊥底面ABCD,PA=AB=2,则三棱锥B-PCD的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域在区间[
b
a
d
c
]上的函数f(x)=
ax-b
+
d-cx
(a>0,c>0)具有如下的性质:f(x)在区间[
b
a
,x0]上单调递增,f(x)在区间[x0
d
c
]上单调递减且f(x)在x=x0处取得最大值,其中x0=
b
a
+
d
c
-
b+d
a+c

(1)求出f(x)=
8x-16
+
36-9x
,请你根据上述指示解决下列问题;
(2)对于任意的x1、x2∈[2,
50
17
],当x1<x2时,比较f(x1)与f(x2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=x2-4ax,当a<
1
2
时,对1<x1<x2,恒有|f(x1)-f(x2)|>2|x1-x2|,则实数a的取值范围使
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则这个几何体的体积为(  )
A、
8
3
π
9
B、
16
3
π
9
C、
16
3
π
9
+2
D、
8
3
π
9
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

对正整数n,有抛物线y2=2(2n-1)x,过P(2n,0)任作直线l交抛物线于An,Bn两点,设数列{an}中,a1=-4,且an=
OAn
OBn
n-1
(其中n>1,n∈N),则数列{an}的前n项和Tn=(  )
A、4n
B、-4n
C、2n(n+1)
D、-2n(n+1)

查看答案和解析>>

同步练习册答案