精英家教网 > 高中数学 > 题目详情

已知函数 .
(1)若.
(2)若函数上是增函数,求的取值范围.

(1) 在时单调递增,在时单调递减, 在 时有极小值,无极大值; (2)

解析试题分析:(1)求导得,后利用导数的正负判断函数的单调性,进而得出极值点;(2)转化为上恒成立,采用分离参数的方法得到 对于 恒成立即可得出结果.
试题解析:(1)依题意,得 .
 , ,故 .令,得 ; 令,得,故 在时单调递增,在时单调递减,故 时有极小值 ,无极大值.
(2) ,上是增函数即上恒成立.
 对于 恒成立,即,则 .
考点:导数在函数单调性与极值中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.
(Ⅰ)若对一切恒成立,求的取值范围;
(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求函数的极值;
(2)求函数的单调区间;
(3)是否存在实数,使函数上有唯一的零点,若有,请求出的范围;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2 mlnx
(1)若函数f(x)在(,+∞)上是递增的,求实数m的取值范围;
(2)当m=2时,求函数f(x)在[1,e]上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求证:函数上单调递增;
(2)若函数有四个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,()在处取得最小值.
(Ⅰ)求的值;
(Ⅱ)若处的切线方程为,求证:当时,曲线不可能在直线的下方;
(Ⅲ)若,()且,试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若,求函数在区间上的最值;
(Ⅱ)若恒成立,求的取值范围. (注:是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若,使成立,求实数的取值范围

查看答案和解析>>

同步练习册答案