设函数,
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在区间上的最值.
(Ⅰ)的单调递增区间为和, 单调递减区间为;(Ⅱ)函数在区间上的最大值为 ,最小值为 .
解析试题分析:(Ⅰ)求函数的单调区间,它的解题方法有两种:一是利用定义,二是导数法,本题由于是三次函数,可用导数法求单调区间,只需求出的导函数,判断的导函数的符号,从而求出的单调区间;(Ⅱ)求函数在区间上的最值,求在区间上的最大值,此题属于函数在闭区间上的最值问题,解此类题,只需求出极值,与端点处的函数值,比较谁大,就取谁,本题比较简单,属于送分题.
试题解析:(Ⅰ) , 令
的变化情况如下表:
由上表可知的单调递增区间为和, 单调递减区间为. 0 — 0 单调递增 极大值 单调递减 极小值 单调递增
(Ⅱ)由(Ⅰ)可知函数 在 上单调递增,在 上单调递减,在 上单调递增, 的极大值 , 的极小值
又
科目:高中数学 来源: 题型:解答题
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的,总成立,求实数的取值范围;
(Ⅲ)设函数,,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com