精英家教网 > 高中数学 > 题目详情
若函数f(x)=
ax+1x2+c
的值域为[-1,5],求实数a、c.
分析:令y=
ax+1
x2+c
,将其变为x2y-ax+cy-1=0,此方程一定有根,当y=0时,满足方程有根,当当y≠0时,必有△≥0,由此得到关于y的不等式,再根据不等式的解集与对应方程的根的关系,知-1、5是方程4cy2-4y-a2=0的两根,故可得关于参数a,c的方程,解方程求值即可.
解答:解:由y=f(x)=
ax+1
x2+c
,得x2y-ax+cy-1=0.
当y=0时,ax=-1,∴a≠0.
当y≠0时,∵x∈R,∴△=a2-4y(cy-1)≥0.
∴4cy2-4y-a2≤0.∵-1≤y≤5,
∴-1、5是方程4cy2-4y-a2=0的两根.
1
c
=4
-
a2
4c
=-5.
a=±
5
c=
1
4
.

故a=±
5
,c=
1
4
点评:本题是判别式法求值域的变形运用,其特点是变形得到关于函数值的不等式,再由不等式的解集端点与相应方程式根的关系建立参数方程求参数,判断别式法求值域是应用较少的一个技巧,运用时易忘掉二次项为0时的讨论,用此法作题时应注意.求f(x)=
a2x2+b2x+c2
a1x2+b1x+c1
(a12+a22≠0)的值域时,常利用函数的定义域非空这一隐含的条件,将函数转化为方程,利用△≥0转化为关于函数值的不等式.求解时,要注意二次项系数为字母时要讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

①命题“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,x3-x2+1>0”;
②函数f(x)=2x-x2的零点有2个;
③若函数f(x)=x2-|x+a|为偶函数,则实数a=0;
④函数y=sinx(x∈[-π,π])图象与x轴围成的图形的面积是S=
x
-x
sinxdx;
⑤若函数f(x)=
ax-5(x>6)
(4-
a
2
)x+4(x≤6)
,在R上是单调递增函数,则实数a的取值范围为(1,8).
其中真命题的序号是
①③
①③
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax(a>0,a≠1)的反函数记为y=g(x),g(16)=2,则f(
12
)
=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax-2+2010(a>0且a≠1)恒过一定点,此定点坐标为
(2,2011)
(2,2011)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若函数f(x)=ax+b的零点为x=2,则函数g(x)=bx2-ax的零点是x=0和x=
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案