精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=2asin2x-2$\sqrt{3}$asinx•cosx+1在区间[0,$\frac{π}{2}$]的最大值为4,求实数a的值.

分析 利用二倍角以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,对a的正负讨论,求出f(x)的最大值,可得实数a的值.

解答 解:函数f(x)=2asin2x-2$\sqrt{3}$asinx•cosx+1
化简可得:f(x)=a-acos2x-$\sqrt{3}a$sin2x+1=a+1-2asin(2x+$\frac{π}{6}$),
∵x∈[0,$\frac{π}{2}$],
∴$\frac{π}{6}$≤2x+$\frac{π}{6}$$≤\frac{7π}{6}$.
当a>0,2x+$\frac{π}{6}$=$\frac{7π}{6}$取得最大值为4,即a+1-2asin$\frac{7π}{6}$=4,
解得:a=$\frac{3}{2}$.
当a<0,2x+$\frac{π}{6}$=$\frac{π}{2}$取得最大值为4,即a+1-2asin$\frac{π}{2}$=4,
解得:a=-3
故得实数a的值$\frac{3}{2}$或-3.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=|x2-2x-1|,若m>n>1,且f(m)=f(n),则mn的取值范围为(  )
A.$({3,3+2\sqrt{2}})$B.$({3,3+2\sqrt{2}}]$C.(1,3)D.(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算$\frac{{{{sin}^2}15°}}{tan15°}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,且满足a1=1,an•an+1=2Sn,设bn=$\frac{{a}_{n}}{{3}^{{a}_{n}}}$,若存在正整数p,q(p<q),使得b1,bp,bq成等差数列,则p+q=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,}&{x<1}\\{\frac{lnx}{x},}&{x≥1}\end{array}\right.$若方程f(x)=m恰有五个不相等的实数根,则实数m的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.D为△ABC的边BC的中点,E为AD中点,若AD=a,则($\overrightarrow{EB}$+$\overrightarrow{EC}$)•$\overrightarrow{EA}$=(  )
A.-$\frac{{a}^{2}}{2}$B.$\frac{{a}^{2}}{2}$C.-2a2D.a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=sin2(x+π)-cos2(x-$\frac{π}{3}$)
(1)求f(x)的最小正周期及单调递增区间;
(2)若|f(x)-m|≤2在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x、y满足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x≥1}\\{x-2y+3≤0}\end{array}\right.$,则$\frac{y}{x}$的取值范围为($\frac{1}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{an}的前n项和为Sn,若Sn+an=4-$\frac{1}{{{2^{n-2}}}}({n∈{N^*}})$,则an=$\frac{n}{{2}^{n-1}}$.

查看答案和解析>>

同步练习册答案