精英家教网 > 高中数学 > 题目详情

【题目】【2016高考四川文科】在平面直角坐标系中,当P(xy)不是原点时,定义P伴随点;当P是原点时,定义P伴随点为它自身,现有下列命题:

若点A的伴随点是点,则点伴随点是点A.

单元圆上的伴随点还在单位圆上.

若两点关于x轴对称,则他们的伴随点关于y轴对称

若三点在同一条直线上,则他们伴随点一定共线.

其中的真命题是 .

【答案】

【解析】

试题分析:

对于,若令,则其伴随点为,而的伴随点为,而不是,故错误;对于,设曲线关于轴对称,则对曲线表示同一曲线,其伴随曲线分别为也表示同一曲线,又因为其伴随曲线分别为的图象关于轴对称,所以正确;令单位圆上点的坐标为其伴随点为仍在单位圆上,故正确;对于,直线上取点后得其伴随点消参后轨迹是圆,故错误.所以正确的为序号为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为

(1)乙投球的命中率

(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是直角梯形,.

(1)求二面角的余弦值;

(2)设是棱上一点,的中点,若与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,且2的等差中项.

1)求数列的通项公式;

2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b﹣2c)cosA=a﹣2acos2
(1)求角A的值;
(2)若a= ,则求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙和点.作⊙的两条切线,切点分别为且直线的方程为

(1)求⊙的方程

(2)设为⊙上任一点,过点向⊙引切线,切点为试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.

(1)求圆的方程;

(2)设,若圆的内切圆,求的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有两个命题:p:关于x的不等式x22x4a0对一切xR恒成立;q:已知a0a±1,函数y=-|a|xR上是减函数,若pq为假命题,pq为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案