19.((本小题满分12分)
已知动点P与双曲线的两个焦点F1、F2的距离之和为定值2a(a>),且cos∠F1PF2的最小值为.
(1)求动点P的轨迹方程;
(2)若已知D(0,3),M、N在动点P的轨迹上,且=λ,求实数λ的取值范围.
,λ的取值范围是[,5]
解(1)∵且|PF1|+|PF2|=2a>|F1F2| (a>)
∴P的轨迹为以F1、F2为焦点的椭圆E,可设E: (其中b2=a2-5)
在△PF1F2中,由余弦定理得
又
∴当且仅当| PF1 |=| PF2 |时,| PF1 |·| PF2 |取最大值,此时cos∠F1PF2取最小值
令=a2=9 ∵c= ∴b2=4故所求P的轨迹方程为
(2)设N(s,t),M(x,y),则由,可得(x,y-3)=λ(s,t-3)
∴x=λs,y=3+λ(t-3)
而M、N在动点P的轨迹上,故且
消去S得解得
又| t |≤2 ∴,解得, 故λ的取值范围是[,5]
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com