精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)求的解集;
(Ⅱ)设函数,若对任意的都成立,求的取值范围.

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)先利用根式的性质将函数的解析式化为含绝对的函数,在将具体化为,利用零点分析法化为不等式组,通过解不等式组解出的解集;(Ⅱ)利用零点分析法,通过分讨论将的解析式化为分段函数,作出函数的图像,由函数知,函数图像是恒过(3,0),斜率为的直线,由对任意的都成立知,函数的图像恒在函数的上方,作出函数的图像,观察满足的条件,求出的取值范围.
试题解析:(Ⅰ)


① 或② 或
解得不等式①:;②:无解 ③:
所以的解集为.   5分
(Ⅱ)的图象恒在图象的上方

图象为恒过定点,且斜率变化的一条直线作函数图象如图,
其中,∴
由图可知,要使得的图象恒在图象的上方
∴实数的取值范围为.          10分

考点:根式性质,含绝对不等式解法,分段函数,数形结合思想,分类整合思想

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在R上定义运算⊙:a⊙b=ab+2a+b,则满足x⊙(x-2) < 0的实数x的取值范围为_____________

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)解不等式
(2)求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解关于x的不等式-(+)+>0(其中∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求不等式的解集;
(2)若不等式)恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知关于x的不等式kx2-2x+6k<0(k≠0).
(1)若不等式的解集为{x|x<-3或x>-2},求k的值;
(2)若不等式的解集为{x|x∈R,x≠},求k的值;
(3)若不等式的解集为R,求k的取值范围;
(4)若不等式的解集为∅,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

不等式的解集为         

查看答案和解析>>

同步练习册答案