已知函数(,)为偶函数,且函数图象的两相邻对称轴间的距离为.
(1)求的值;
(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.
(1) ;(2) .
解析试题分析:(1)将原函数化简得,函数为偶函数,所以得,由,所以,又图象的两相邻对称轴间的距离为,所以周期,可得;(2) 的图象向右平移个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象,所以,将看作整体,由余弦函数的性质,可得的单调递减区间.
解:(1)
.因为为偶函数,所以对,恒成立,
因此.
即,
整理得.因为,且,所以.
又因为,故.所以.
由题意得,所以.故.
因此.
(2)将的图象向右平移个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象.
所以.
当(),
即()时,单调递减,
因此的单调递减区间为().
考点:1.三角函数的性质;2.三角函数的图像变换.
科目:高中数学 来源: 题型:解答题
已知函数+的部分图象如图所示.
(1)将函数的图象保持纵坐标不变,横坐标向右平移个单位后得到函数的图像,求函数在上的值域;
(2)求使的的取值范围的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.
(1)若角时,求该八边形的面积;
(2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数(A>0,ω>0)的一系列对应值如下表:
x | |||||||
y | -1 | 1 | 3 | 1 | -1 | 1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:函数
(1)求函数的周期T,与单调增区间.
(2)函数的图象有几个公共交点.
(3)设关于的函数的最小值为,试确定满足的的值,并对此时的值求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com