精英家教网 > 高中数学 > 题目详情
函数y=
lg(2sinx-1)+
-tanx-1
cos(
π
2
+
π
8
)
,求定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用,三角函数的图像与性质
分析:根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可.
解答: 解:∵函数y=
lg(2sinx-1)+
-tanx-1
cos(
π
2
+
π
8
)

2sinx-1>0
-tanx-1≥0

sinx>
1
2
tanx≤-1

解得
π
2
+2kπ<x≤
4
+2kπ,k∈Z;
∴函数y的定义域是
{x|
π
2
+2kπ<x≤
4
+2kπ,k∈Z}.
点评:本题考查了求函数定义域的应用问题,也考查了三角函数的图象与性质的应用问题,是基础性题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个人以每秒6米的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人的前进方向相同)汽车在时间t内的路程s=
1
2
t2米,那么此人
A.可在7秒内追上汽车
B.可在9秒内追上汽车
C.不能追上汽车,但其间最近距离为14米
D.不能追上汽车,但其间最近距离为7米
解:∵汽车在时刻t的速度为v(t)=t米/秒 
∴a=
v(t)
t
=
t
t
=1m/s2
由此判断为匀加速运动
再设人于x秒追上汽车,有6x-25=
1
2
ax2    ①
∵x无解,因此不能追上汽车
①为一元二次方程,求出最近距离为7米
这一结论是怎么解出来的,请详细解答.

查看答案和解析>>

科目:高中数学 来源: 题型:

在菱形ABCD中AC=2,BD=4,将△ACD沿着AC折起,使点D翻折到D′位置,连BD′,直线BD′与平面ABC所成的角为30°,如图所示.
(1)求证AC⊥BD′;
(2)若E为AB中点,过C作平面ABC的垂线l,直线l上是否存在一点F,使EF∥平面AD′C?若存在,求出CF的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-cos2x,x∈R.
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,内角A、B、C所对边的长分别是a、b、c,若f(A)=2,C=
π
4
,c=2,求△ABC的面积S△ABC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面区域
0≤x≤2
0≤y≤2
内随机取一点,则所取的点恰好满足x+y≤
2
的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某数列第一项为1,并且对所有n≥2,n∈N*,数列的前n项之积n2,则当n≥2时,有(  )
A、an=2n-1
B、an=n2
C、an=
n2
(n-1)2
D、an=
(n+1)2
n2

查看答案和解析>>

科目:高中数学 来源: 题型:

极点与直角坐标系的原点重合,极轴与x轴正半轴重合,直线θ=
π
3
与曲线
x=2+2cosα
y=2sinα
 (a为参数)在第一象限的交点A,则点A的极坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一物体受到平面上的三个力F1,F2,F3的作用处于平衡状态.已知F1,F2成60°角,且|F1|=3N,|F2|=4N,则cos<F1,F3>=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视厂家有A,B两种型号的电视机参加家电下乡活动.若厂家投放A,B型号电视机的价值分别为p,q万元.农民购买电视机获得相应的补贴分别为
1
10
p,mln(q+1)(m>0)万元.若厂家把总价值为10万元的A,B两型号电视机投放市场,且A,B两型号的电视机投放金额都不低于1万元.
(1)当m=
2
5
时,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值;(精确到0.1,参考数据,ln4=1.4)
(2)当m∈(
1
5
,1)时,试讨论农民得到的补贴随厂家投放B型号电视机金额的变化而变化的情况.

查看答案和解析>>

同步练习册答案