精英家教网 > 高中数学 > 题目详情

【题目】轴交于两点(点在点的左侧),是分别过点的圆的切线,过此圆上的另一个点点是圆上任一不与重合的动点)作此圆的切线,分别交两点,且两直线交于点

)设切点坐标为,求证:切线的方程为

设点坐标为,试写出的关系表达式(写出详细推理与计算过程)

【答案】(1)(2)

【解析】

试题(1)先根据点斜式写出切线的方程,再利用,化简可得(2)先求出C,D坐标,再根据两点式写出AD,BC方程,联立方程组解得点M坐标,最后根据,得的关系表达式

∵圆心切点

圆心与切点所成直线斜率

∴切线斜率

又∵切线过

∴切线方程为

整理得

即切线方程为

∵过点的切线为

时,,当时,

联立

所以

又∵

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{n}中1=3,已知点(nn+1)在直线y=x+2上,

(1)求数列{n}的通项公式;

(2)若bnn3n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,点在以为直径的圆上,平面平面,点在线段上,且,点的重心,点的中点.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 .

(1)当时,直线的交点,且它在两坐标轴上的截距相反,求直线的方程;

(2)若坐标原点到直线的距离为,判断的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日期

122

123

124

温差

11

13

12

发芽数(颗)

25

30

26

1)请根据122日至124日的数据,求出关于的线性回归方程

2)该农科所确定的研究方案是:先用上面的3组数据求线性回归方程,再选取2组数据进行检验.若125日温差为,发芽数16颗,126日温差为,发芽数23颗.由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;

(Ⅱ)设点,曲线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点,上顶点为为椭圆上任意一点,且的面积最大值为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若点.为椭圆上的两个不同的动点,且为坐标原点),则是否存在常数,使得点到直线的距离为定值?若存在,求出常数和这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点分别在轴和轴上运动,且,若动点满足.

1)求出动点P的轨迹对应曲线C的标准方程;

2)一条纵截距为2的直线与曲线C交于P,Q两点,若以PQ直径的圆恰过原点,求出直线方程.

查看答案和解析>>

同步练习册答案