精英家教网 > 高中数学 > 题目详情
已知为正常数.(e=2.71828…);
(理科做)(1)若,求函数f(x)在区间[1,e]上的最大值与最小值
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2都有,求a的取值范围.
(文科做)(1)当a=2时描绘ϕ(x)的简图
(2)若,求函数f(x)在区间[1,e]上的最大值与最小值.
【答案】分析:(理科)(1)本小题需要先求出函数的导函数,然后得出单调区间,利用单调性来求出函数的最大和最小值,属于基本题目;
(2)本题函数g(x)=|lnx|+φ(x)含有绝对值号,考虑到去掉绝对值较为繁琐,也不可行,因此采用整体上处理,即构造一个新的函数来结合单调性求解,由已知,可以变形为,因此构造函数ω(x)=g(x)+x,
,(a>0,x∈(0,2]),然后求解.
(文科)(1)本题的函数图象简图的作法可以利用图象变换来做,考查函数与函数的图象之间的关系来作出;
(2)由已知求得函数的导函数,利用单调性求出函数的最大(小)值来方法同(理科)(1)类似..
解答:解:(理科)(1)∵
(2分)
故当时,f'(x)<0,即f(x)单调递减,从而x∈[1,2)时,f(x)单调递减,
时,f'(x)≥0,即f(x)单调递增,从而x∈[2,e]时,f(x)单调递增,(4分)
,故
(2)由
所以可设…(8分)
故由题设可知ω(x)在x∈(0,2]上为减函数,
…(10分)
而 由可得
上是增函数,

显然当
a=时,也成立,
所以a的取值范围是[,+∞)…(14分)

(文科)(1)由已知,其图象是由反比例函数图象的图象向左平行移动1个单位长度所得到,如图:

(2)由已知f(x)=,于是有=,显然f′(x)>0在[1,e]上恒成立,所以函数f(x)在区间[1,e]上为增函数,
所以
点评:本题考查了函数的导数及其应用,利用导数求最大(小)值,利用导数以及结合给定的函数的单调区间求解参数的范围,另外考查了函数的图象的画法,综合考查了数形结合思想,分类思想,函数与方程的思想,构造函数解决问题的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知及是实数集,e是自然对数的底数,函数f(x)=
1+In(x+1)
x
的定义域为{x|x>0,x∈R}
(I)解关于x的不等式f(x2+1)>
2
e-1

(II)若常数k是正整数,当x>0时,f(x)>
k
x+1
恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知点P1(x0,y0)为双曲线
x2
8b2
-
y2
b2
=1
(b为正常数)上任一点,F2为双曲线的右焦点,过P1作右准线的垂线,垂足为A,连接F2A并延长交y轴于P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)设轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB,QD分别交y轴于M,N两点.求证:以MN为直径的圆过两定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知φ(x)=
a
x+1
,a
为正常数.(e=2.71828…);
(理科做)(1)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)在区间[1,e]上的最大值与最小值
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范围.
(文科做)(1)当a=2时描绘?(x)的简图
(2)若f(x)=?(x)+
1
?(x)
,求函数f(x)在区间[1,e]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵
12
2a
的属于特征值b的一个特征向量为
1
1
,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线
x=2pt2
y=2pt
(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

同步练习册答案