精英家教网 > 高中数学 > 题目详情
用数学归纳法证明时,由的假设到证明时,等式左边应添加的式子是(   )
A.B.C.D.
B
根据等式左边的特点,各数是先递增再递减,由于n=k,左边=12+22+…+(k-1)2+k2+(k-1)2+…+22+12,n=k+1时,左边=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12,比较两式,从而等式左边应添加的式子是(k+1)2+k2,故答案为(k+1)2+k2,选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x-xlnx,数列{an}满足0<a1<1,an+1=f(an).求证:
(1)函数f(x)在区间(0,1)是增函数;
(2)an<an+1<1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明等式时,第一步验证时,左边应取的项是
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在用数学归纳法证明时,则当时左端应在的基础上加上的项是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明等式,从“k到k+1”左端需增乘的代数式为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)在各项为正的数列中,数列的前n项和满足

(1)求;(2) 由(1)猜想数列的通项公式;(3) 求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知数列中,,, 为该数列的前项和,且.
(1)求数列的通项公式;
(2)若不等式对一切正整数都成立,求正整数的最大值,并证明结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

时,
(I)求;
(II)猜想的关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明:“”,在验证时,左边计算的值=___.

查看答案和解析>>

同步练习册答案