精英家教网 > 高中数学 > 题目详情
4.在直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,A是C上的动点,且满足|AF|的最小值为2-$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的标准方程;
(2)在椭圆C上任取一点B,使OA⊥OB,求证:点O到直线AB的距离为定值.

分析 (1)利用|AF|的最小值为2-$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$,求出a,c,b,即可求椭圆C的标准方程;
(2)设A(x1,y1),B(x2,y2),分类讨论:①当直线AB斜率不存在时,由椭圆的对称性,可求原点O到直线的距离;②当直线AB斜率存在时,设直线AB的方程为y=kx+m,代入椭圆方程,利用韦达定理及点到直线的距离公式,即可得到结论

解答 (1)解:∵|AF|的最小值为2-$\sqrt{3}$,离心率为$\frac{\sqrt{3}}{2}$.
∴a-c=2-$\sqrt{3}$,离心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
∴$a=2,c=\sqrt{3}$,
∴b=1,
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)证明:设A(x1,y1),B(x2,y2),
①当直线AB斜率不存在时,由椭圆的对称性可知x1=x2,y1=-y2
∵OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
∴x1x2+y1y2=0,∴x12-y12=0
∵x12+4y12=4,∴|x1|=|y1|=$\frac{2\sqrt{5}}{5}$
∴原点O到直线的距离为d=|x1|=$\frac{2\sqrt{5}}{5}$
②当直线AB斜率存在时,设直线AB的方程为y=kx+m,代入椭圆方程,消元可得(1+4k2)x2+8kmx+4m2-4=0
∴x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$
∵OA⊥OB,∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
∴x1x2+y1y2=0,∴(1+k2)$\frac{4{m}^{2}-4}{1+4{k}^{2}}$-km×$\frac{8km}{1+4{k}^{2}}$+m2=0
∴5m2=4(k2+1)
∴原点O到直线的距离为d=$\frac{|m|}{\sqrt{{k}^{2}+1}}$=$\frac{2\sqrt{5}}{5}$.
综上,点O到直线AB的距离为定值.

点评 本题考查椭圆的标准方程,考查圆与椭圆的综合,联立方程,利用韦达定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设集合A={x|x<-1或x>2},集合B={x|1<x<3},则(∁RA)∩B={x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线x+m2y+6=0与直线(m-2)x+3my+2m=0平行,则实数m的值为(  )
A.m=0或m=3B.m=-1或m=3C.m=0或m=-1D.m=-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将半径为5的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r1,r2,r3,则r1+r2+r3=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点P在直线P1P2上,且$\overrightarrow{{P}_{1}P}$=$\frac{2}{5}$$\overrightarrow{P{P}_{2}}$,若点P1,P2,P的坐标分别为(x,-1,3),(-2,y,1),(3,0,z),求x,y,z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.光线从点A(-3,4)出发射到x轴上,被x轴反射到y轴上,又被y轴反射后到点B(-1,6),求光线所经过的路途长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时,f(x)=x3,则方程f(x-1)=cosπx(-2≤x≤4)所有实根的和为(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.数列{an}满足:a1=1,a2=3,3an+2=2an+1+an,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆0:x2+y2=r2(r>0)与直线x+2y-5=0相切.
(1)求圆O的方程;
(2)若过点(-1,3)的直线l被圆0所截得的弦长为4,求直线1的方程;
(3)若过点A(0,$\sqrt{5}$)作两条斜率分别为k1,k2的直线交圆0于B、C两点,且k1k2=-$\frac{1}{2}$,求证:直线BC恒过定点.并求出该定点的坐标.

查看答案和解析>>

同步练习册答案