精英家教网 > 高中数学 > 题目详情

【题目】在△ABC内角A,B,C的对边分别是a,b,c,cos = ,且acosB+bcosA=2,则△ABC的面积的最大值为

【答案】
【解析】解:∵cos =
∴cosC=2cos2 ﹣1=2( )2﹣1=
∵acosB+bcosA=2,
∴a× +b× =2,
∴c=2,…(9分)
∴4=a2+b2﹣2ab× ≥2ab﹣2ab× = ab,
∴ab≤ (当且仅当a=b= 时等号成立)
由cosC= ,得sinC=
∴S△ABC= absinC≤ × × =
故△ABC的面积最大值为
所求的式子cosC利用二倍角的余弦函数公式化简后,将已知的cos 的值代入即可求出cosC值,利用余弦定理分别表示出cosB和cosA,代入到已知的等式中,化简后即可求出c的值,然后利用余弦定理表示出c2=a2+b2﹣2abcosC,把c及cosC的值代入后,利用基本不等式即可求出ab的最大值,然后由cosC的值,及C的范围,利用同角三角函数间的基本关系求出sinC的值,利用三角形的面积公式表示出三角形ABC的面积,把ab的最大值及sinC的值代入即可求出面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,AD是角A的平分线.
(1)用正弦定理或余弦定理证明:
(2)已知AB=2.BC=4, ,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名运动员进行射击训练,已知他们击中目标的环数均稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如表:
甲运动员

射击环数

频数

频率

7

10

8

10

9

x

10

30

y

合计

100

1

乙运动员

射击环数

频数

频率

7

6

8

10

9

z

0.4

10

合计

80

如果将频率视为概率,回答下面的问题:
(1)写出x,y,z的值;
(2)求甲运动员在三次射击中,至少有一次命中9环(含9环)以上的概率;
(3)若甲运动员射击2次,乙运动员射击1次,用ξ表示这三次中射击击中9环的次数,求ξ的概率分布列及Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ +alnx(a∈R).
(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(2)已知g(x)= x2+(m﹣1)x+ ,m≤﹣ ,h(x)=f(x)+g(x),当时a=1,h(x)有两个极值点x1 , x2 , 且x1<x2 , 求h(x1)﹣h(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0, ),则函数g(x)=cos(2x﹣φ)的图象(
A.关于点( ,0)对称
B.可由函数f(x)的图象向右平移 个单位得到
C.可由函数f(x)的图象向左平移 个单位得到
D.可由函数f(x)的图象向左平移 个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+alnx
(1)当a=﹣1时,求函数的单调区间和极值
(2)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=﹣sin(ωx+φ)(ω>0,φ∈(﹣ ))的一条对称轴为x= ,一个对称中心为( ,0),在区间[0, ]上单调.
(1)求ω,φ的值;
(2)用描点法作出y=sin(ωx+φ)在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰直角△ABC中,AC=BC,D在AB边上且满足: ,若∠ACD=60°,则t的值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案