15£®ÒÑÖªÔ²M£º£¨x-$\sqrt{3}$£©2+y2=16£¬N£¨-$\sqrt{3}$£¬0£©£¬µãPÔÚÔ²MÉÏ£¬µãQÔÚMPÉÏ£¬ÇÒµãCÂú×ã$\overrightarrow{NC}$=$\frac{1}{2}$$\overrightarrow{NP}$£¬$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0
£¨1£©Ç󶯵ãQµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©¹ýxÖáÉÏÒ»µãD×÷Ô²O£ºx2+y2=1µÄÇÐÏßl½»¹ì¼£EÓÚA£¬BÁ½µã£¬Çó¡÷AOBµÄÃæ»ýµÄ×î´óÖµºÍÏàÓ¦µÄµãDµÄ×ø±ê£®

·ÖÎö £¨1£©ÓÉÌâÒâ»­³öͼÐΣ¬ÓÉͼ¿ÉµÃ£¬|NQ|+|MQ|=|MP|=4£¬ËµÃ÷¶¯µãQµÄ¹ì¼£ÊÇÒÔN£¬MΪ½¹µã£¬ÒÔ2Ϊ³¤°ëÖáµÄÍÖÔ²£¬½øÒ»²½ÇóµÃÆä¹ì¼£·½³Ì£»
£¨2£©¶ÔÖ±ÏßµÄбÂÊ´æÔںͲ»´æÔÚ·ÖÀ࣬бÂʲ»´æÔÚʱ£¬Ö±½ÓÇó³öA£¬BµÄ×ø±ê¿ÉµÃ¡÷AOBµÄÃæ»ý£¬²¢µÃµ½DµÄ×ø±ê£»µ±Ð±ÂÊ´æÔÚʱ£¬Éè³öÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ½áºÏÏÒ³¤¹«Ê½ÇóµÃ|AB|µÄ×î´óÖµ£¬½øÒ»²½ÇóµÃ¡÷AOBµÄÃæ»ýµÄ×î´óÖµ£¬²¢ÇóµÃDµÄ×ø±ê£¬×ۺϺó¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Ô²M£º£¨x-$\sqrt{3}$£©2+y2=16£¬N£¨-$\sqrt{3}$£¬0£©£¬
Èçͼ£¬
¡ß$\overrightarrow{NC}$=$\frac{1}{2}$$\overrightarrow{NP}$£¬¡àCΪÏß¶ÎNPµÄÖе㣬ÓÖ$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0£¬
¡àCQ¡ÍNP£¬Ôò|NQ|=|PQ|£¬Ôò|NQ|+|MQ|=|MP|=4£®
¡ß|MN|=$2\sqrt{3}£¼4$£¬
¡à¶¯µãQµÄ¹ì¼£ÊÇÒÔN£¬MΪ½¹µã£¬ÒÔ2Ϊ³¤°ëÖáµÄÍÖÔ²£¬
¡àb2=a2-c2=1£¬ÔòEµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©Èçͼ£¬
µ±ÇÐÏßбÂʲ»´æÔÚʱ£¬ÓÉ${y}^{2}=1-\frac{1}{4}=\frac{3}{4}$£¬µÃy=$¡À\frac{\sqrt{3}}{2}$£¬
¡à|AB|=$\sqrt{3}$£¬¡÷AOBµÄÃæ»ýS=$\frac{1}{2}¡Á1¡Á\sqrt{3}=\frac{\sqrt{3}}{2}$£¬
´ËʱD£¨-1£¬0£©»ò£¨1£¬0£©£»
µ±ÇÐÏßµÄбÂÊ´æÔÚʱ£¬ÉèÇÐÏß·½³ÌΪy=kx+m£¨k¡Ù0£©£¬
ÓÉ$\frac{|m|}{\sqrt{{k}^{2}+1}}=1$£¬µÃm2=1+k2£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£®
¡÷=64k2m2-4£¨1+4k2£©£¨4m2-4£©=48k2£¾0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=\frac{-8km}{1+4{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬
¡à|AB|=$\sqrt{1+{k}^{2}}\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}\sqrt{£¨\frac{-8km}{1+4{k}^{2}}£©^{2}-4\frac{4{m}^{2}-4}{1+4{k}^{2}}}$
=$\sqrt{1+{k}^{2}}•\sqrt{\frac{48{k}^{2}}{£¨1+4{k}^{2}£©^{2}}}$=$\sqrt{\frac{48{k}^{4}+48{k}^{2}}{£¨1+4{k}^{2}£©^{2}}}$=$\sqrt{3}•\sqrt{\frac{£¨4{k}^{2}+1£©^{2}+2£¨4{k}^{2}+1£©-3}{£¨4{k}^{2}+1£©^{2}}}$
=$\sqrt{3}•\sqrt{-\frac{3}{£¨4{k}^{2}+1£©^{2}}+2\frac{1}{4{k}^{2}+1}+1}$£®
¡àµ±$\frac{1}{4{k}^{2}+1}=\frac{1}{3}$ʱ£¬|AB|ÓÐ×î´óֵΪ2£¬Ôò¡÷AOBµÄÃæ»ýÓÐ×î´óֵΪ$\frac{1}{2}¡Á2¡Á1=1$£®
´Ëʱk=$¡À\frac{\sqrt{2}}{2}$£¬m=$¡À\frac{\sqrt{6}}{2}$£¬Ö±Ïß·½³ÌÓÐËÄÌõ£¬·Ö±ðΪ$y=¡À\frac{\sqrt{2}}{2}x+\frac{\sqrt{6}}{2}$£¬y=$¡À\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{2}$£®
DµÄ×ø±êΪ£¨$¡À\sqrt{3}£¬0$£©£®
×ÛÉÏ£¬¡÷AOBµÄÃæ»ýµÄ×î´óֵΪ1£¬DµÄ×ø±êΪ£¨$¡À\sqrt{3}£¬0$£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÔ²×¶ÇúÏß¹ØÏµµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÍÖÔ²C£º$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1µÄÓÒ½¹µãF£¬¹ý½¹µãFµÄÖ±Ïßl0¡ÍxÖᣬP£¨x0£¬y0£©£¨x0y0¡Ù0£©ÎªCÉÏÈÎÒâÒ»µã£¬CÔÚµãP´¦µÄÇÐÏßΪl£¬lÓël0ÏཻÓÚµãM£¬ÓëÖ±Ïßl1£ºx=3ÏཻÓÚN£®
£¨I£© ÇóÖ¤£»Ö±Ïß$\frac{{x}_{0}x}{3}$+$\frac{{y}_{0}y}{2}$=1ÊÇÍÖÔ²CÔÚµãP´¦µÄÇÐÏߣ»
£¨¢ò£©ÇóÖ¤£º$\frac{|FM|}{|FN|}$Ϊ¶¨Öµ£¬²¢Çó´Ë¶¨Öµ£»
£¨¢ó£©ÇëÎÊ¡÷ONP£¨OÎª×ø±êÔ­µã£©µÄÃæ»ýÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬ÇëÇó³ö×îС¼°´ËʱµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®f£¨x£©¨Tax2+bx+c£¬Èô¹ØÓÚxµÄ²»µÈʽf£¨x-1£©¡Ý0µÄ½â¼¯Îª[0£¬1]£¬Ôò¹ØÓÚxµÄ²»µÈʽf£¨x+1£©¡Ü0µÄ½â¼¯Îª{x|x¡Ý-1£¬»òx¡Ü-2}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÕýÈýÀâ×¶S-ABCµ×Ãæ±ß³¤Îª2$\sqrt{3}$£¬¹ý²àÀâSAÓëµ×ÃæÖÐÐÄO×÷½ØÃæSAD£¬ÔÚ¡÷SADÖУ¬ÈôSA=AD£¬Çó²àÃæÓëµ×ÃæËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÍÖÔ²C£ºx2+2y2=4£®
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©ÉèOΪԭµã£¬ÈôµãAÔÚÍÖÔ²CÉÏ£¬µãBÔÚÖ±Ïßy=2ÉÏ£¬ÇÒOA¡ÍOB£¬ÊÔÅжÏÖ±ÏßABÓëÔ²x2+y2=2µÄλÖùØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¹ýµãA£¨3£¬2£©×÷Ô²x2+y2+2x-4y-20=0µÄÏÒ£¬ÆäÖÐÏÒ³¤ÎªÕûÊýµÄ¹²ÓУ¨¡¡¡¡£©
A£®6ÌõB£®7ÌõC£®8ÌõD£®9Ìõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®É躯Êýf£¨x£©=lnx£®
£¨I£©Çóº¯Êýg£¨x£©=x-1-f£¨x£©µÄ¼«Ð¡Öµ£»
£¨¢ò£©Ö¤Ã÷£ºµ±x¡Ê[1£¬+¡Þ£©Ê±£¬²»µÈʽ$\frac{f£¨x£©}{2}¡Ý\frac{x-1}{x+1}$ºã³ÉÁ¢£»
£¨¢ó£©ÒÑÖªa¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬ÊԱȽÏf£¨tana£©Óë2tan£¨a-$\frac{¦Ð}{4}$£©µÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ½¹¾àΪ$2\sqrt{3}$£¬ÇÒÓÒ½¹µãFÓë¶ÌÖáµÄÁ½¸ö¶Ëµã×é³ÉÒ»¸öÕýÈý½ÇÐΣ®ÈôÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÇÒÔÚÍÖÔ²CÉÏ´æÔÚµãM£¬Ê¹µÃ£º$\overrightarrow{OM}=\frac{3}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¬Ôò³ÆÖ±Ïßl¾ßÓÐÐÔÖÊH£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl´¹Ö±ÓÚxÖᣬÇÒ¾ßÓÐÐÔÖÊH£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÇóÖ¤£ºÔÚÍÖÔ²CÉϲ»´æÔÚÈý¸ö²»Í¬µÄµãP¡¢Q¡¢R£¬Ê¹µÃÖ±ÏßPQ¡¢QR¡¢RP¶¼¾ßÓÐÐÔÖÊH£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª5x=$\frac{a+3}{5-a}$Óиº¸ù£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸