·ÖÎö £¨1£©ÓÉÌâÒ⻳öͼÐΣ¬ÓÉͼ¿ÉµÃ£¬|NQ|+|MQ|=|MP|=4£¬ËµÃ÷¶¯µãQµÄ¹ì¼£ÊÇÒÔN£¬MΪ½¹µã£¬ÒÔ2Ϊ³¤°ëÖáµÄÍÖÔ²£¬½øÒ»²½ÇóµÃÆä¹ì¼£·½³Ì£»
£¨2£©¶ÔÖ±ÏßµÄбÂÊ´æÔںͲ»´æÔÚ·ÖÀ࣬бÂʲ»´æÔÚʱ£¬Ö±½ÓÇó³öA£¬BµÄ×ø±ê¿ÉµÃ¡÷AOBµÄÃæ»ý£¬²¢µÃµ½DµÄ×ø±ê£»µ±Ð±ÂÊ´æÔÚʱ£¬Éè³öÖ±Ïß·½³Ì£¬ºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ½áºÏÏÒ³¤¹«Ê½ÇóµÃ|AB|µÄ×î´óÖµ£¬½øÒ»²½ÇóµÃ¡÷AOBµÄÃæ»ýµÄ×î´óÖµ£¬²¢ÇóµÃDµÄ×ø±ê£¬×ۺϺó¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨1£©Ô²M£º£¨x-$\sqrt{3}$£©2+y2=16£¬N£¨-$\sqrt{3}$£¬0£©£¬![]()
Èçͼ£¬
¡ß$\overrightarrow{NC}$=$\frac{1}{2}$$\overrightarrow{NP}$£¬¡àCΪÏß¶ÎNPµÄÖе㣬ÓÖ$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0£¬
¡àCQ¡ÍNP£¬Ôò|NQ|=|PQ|£¬Ôò|NQ|+|MQ|=|MP|=4£®
¡ß|MN|=$2\sqrt{3}£¼4$£¬
¡à¶¯µãQµÄ¹ì¼£ÊÇÒÔN£¬MΪ½¹µã£¬ÒÔ2Ϊ³¤°ëÖáµÄÍÖÔ²£¬
¡àb2=a2-c2=1£¬ÔòEµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£»
£¨2£©Èçͼ£¬
µ±ÇÐÏßбÂʲ»´æÔÚʱ£¬ÓÉ${y}^{2}=1-\frac{1}{4}=\frac{3}{4}$£¬µÃy=$¡À\frac{\sqrt{3}}{2}$£¬
¡à|AB|=$\sqrt{3}$£¬¡÷AOBµÄÃæ»ýS=$\frac{1}{2}¡Á1¡Á\sqrt{3}=\frac{\sqrt{3}}{2}$£¬
´ËʱD£¨-1£¬0£©»ò£¨1£¬0£©£»![]()
µ±ÇÐÏßµÄбÂÊ´æÔÚʱ£¬ÉèÇÐÏß·½³ÌΪy=kx+m£¨k¡Ù0£©£¬
ÓÉ$\frac{|m|}{\sqrt{{k}^{2}+1}}=1$£¬µÃm2=1+k2£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£®
¡÷=64k2m2-4£¨1+4k2£©£¨4m2-4£©=48k2£¾0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=\frac{-8km}{1+4{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{4{m}^{2}-4}{1+4{k}^{2}}$£¬
¡à|AB|=$\sqrt{1+{k}^{2}}\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}\sqrt{£¨\frac{-8km}{1+4{k}^{2}}£©^{2}-4\frac{4{m}^{2}-4}{1+4{k}^{2}}}$
=$\sqrt{1+{k}^{2}}•\sqrt{\frac{48{k}^{2}}{£¨1+4{k}^{2}£©^{2}}}$=$\sqrt{\frac{48{k}^{4}+48{k}^{2}}{£¨1+4{k}^{2}£©^{2}}}$=$\sqrt{3}•\sqrt{\frac{£¨4{k}^{2}+1£©^{2}+2£¨4{k}^{2}+1£©-3}{£¨4{k}^{2}+1£©^{2}}}$
=$\sqrt{3}•\sqrt{-\frac{3}{£¨4{k}^{2}+1£©^{2}}+2\frac{1}{4{k}^{2}+1}+1}$£®
¡àµ±$\frac{1}{4{k}^{2}+1}=\frac{1}{3}$ʱ£¬|AB|ÓÐ×î´óֵΪ2£¬Ôò¡÷AOBµÄÃæ»ýÓÐ×î´óֵΪ$\frac{1}{2}¡Á2¡Á1=1$£®
´Ëʱk=$¡À\frac{\sqrt{2}}{2}$£¬m=$¡À\frac{\sqrt{6}}{2}$£¬Ö±Ïß·½³ÌÓÐËÄÌõ£¬·Ö±ðΪ$y=¡À\frac{\sqrt{2}}{2}x+\frac{\sqrt{6}}{2}$£¬y=$¡À\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{2}$£®
DµÄ×ø±êΪ£¨$¡À\sqrt{3}£¬0$£©£®
×ÛÉÏ£¬¡÷AOBµÄÃæ»ýµÄ×î´óֵΪ1£¬DµÄ×ø±êΪ£¨$¡À\sqrt{3}£¬0$£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÔ²×¶ÇúÏß¹ØÏµµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 6Ìõ | B£® | 7Ìõ | C£® | 8Ìõ | D£® | 9Ìõ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com