精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:x2+2y2=4.
(1)求椭圆C的离心率;
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB与圆x2+y2=2的位置关系,并证明你的结论.

分析 (1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;
(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,用坐标表示后,把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等,写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等,说明直线AB与圆x2+y2=2相切.

解答 解:(1)椭圆C:x2+2y2=4,即为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,
可得a=2,b=$\sqrt{2}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$,
离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$;
(2)直线AB与圆x2+y2=2相切.
证明如下:
设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,即tx0+2y0=0,
解得t=-$\frac{2{y}_{0}}{{x}_{0}}$,
当x0=t时,y0=-$\frac{1}{2}$t2,代入椭圆C的方程,得t=±$\sqrt{2}$.
故直线AB的方程为x=±$\sqrt{2}$,
圆心O到直线AB的距离d=$\sqrt{2}$.
此时直线AB与圆x2+y2=2相切.
当x0≠t时,直线AB的方程为y-2=$\frac{{y}_{0}-2}{{x}_{0}-t}$(x-t),
即(y0-2)x-(x0-t)y+2x0-ty0=0.
圆心O到直线AB的距离d=$\frac{|2{x}_{0}-t{y}_{0}|}{\sqrt{({y}_{0}-2)^{2}+({x}_{0}-t)^{2}}}$.
又x02+2y02=4,t=-$\frac{2{y}_{0}}{{x}_{0}}$,
故d=$\frac{|2{x}_{0}+\frac{2{{y}_{0}}^{2}}{{x}_{0}}|}{\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}+\frac{4{{y}_{0}}^{2}}{{{x}_{0}}^{2}}+4}}$=$\frac{|\frac{4+{{x}_{0}}^{2}}{{x}_{0}}|}{\sqrt{\frac{{{x}_{0}}^{4}+8{{x}_{0}}^{2}+16}{2{{x}_{0}}^{2}}}}$=$\sqrt{2}$.
此时直线AB与圆x2+y2=2相切.

点评 本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在三棱锥A-BCD中,AB=AD=CB=CD,∠BAD=∠BCD=90°,且面ABD⊥面BCD,给出下列结论:
①AC⊥BD;
②△ACD是等边三角形;
③AB与面BCD成60°角;
④AB与CD成60°角.
其中正确的是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C的对边分别是a,b,c,满足c=$\sqrt{3}$asinC-ccosA.
(1)求角A的大小;
(2)已知等差数列{an}的公差不为零,若a1cosA=1,且a2,a4,a8成等比数列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,△ABC与△DBC是边长均为2的等边三角形,且所在两平面互相垂直,EA⊥平面ABC,且EA=$\sqrt{3}$.
(1)求证:DE∥平面ABC
(2)若2$\overrightarrow{CM}$=$\overrightarrow{ME}$,求多面体DMAEB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.图1是一段半圆柱形水渠的直观图,其横断面如图2所示,其中C为半圆弧$\widehat{ACB}$的中点,坝宽AB为2米.
(1)当渠中水深CD为0.4米时,求水面的宽度;
(2)若把这条水渠改挖(不准填土)成横断面为等腰梯形的水渠,且使渠的底面与地面平行,则当改挖后的水渠底宽为多少时,所挖出的土量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆M:(x-$\sqrt{3}$)2+y2=16,N(-$\sqrt{3}$,0),点P在圆M上,点Q在MP上,且点C满足$\overrightarrow{NC}$=$\frac{1}{2}$$\overrightarrow{NP}$,$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0
(1)求动点Q的轨迹E的方程;
(2)过x轴上一点D作圆O:x2+y2=1的切线l交轨迹E于A,B两点,求△AOB的面积的最大值和相应的点D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,圆O的圆心为坐标原点,B为圆O上一点,若点A坐标为(3,0),|AB|=4,sin∠AOB=$\frac{\sqrt{15}}{4}$.
求:(1)△AOB的面积;
(2)AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ex-ax-1.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,求实数a,b的值;
(Ⅱ)求f(x)在[0,+∞)上的最小值;
(Ⅲ)证明:${1^n}+{3^n}+…+{(2n-1)^n}<\frac{{\sqrt{e}}}{e-1}{(2n)^n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设k∈R,“直线l:y=kx+$\sqrt{2}$与圆x2+y2=1相切”是“k=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案