分析 (Ⅰ)求导数,利用导数的几何意义,结合曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,即可求实数a,b的值;
(Ⅱ)求导数,分类讨论,确定函数的单调性,即可求f(x)在[0,+∞)上的最小值;
(Ⅲ)证明ex≥x+1.取x=-$\frac{i}{2n}$,i=1,3,…,2n-1,得1-$\frac{i}{2n}$≤${e}^{-\frac{i}{2n}}$,即($\frac{2n-i}{2n}$)n≤${e}^{-\frac{i}{2}}$,利用累加法,即可证明结论.
解答 (Ⅰ)解:∵f(x)=ex-ax-1,
∴f′(x)=ex-a,
∴f′(1)=e-a,
∵f(1)=e-a-1,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-(e-a-1)=(e-a)(x-1),即y=(e-a)x-1,
∵曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,
∴e-a=2,b=-1,
∴a=e-2,b=-1;
(Ⅱ)解:∵f(x)=ex-ax-1,
∴f′(x)=ex-a
∴a≤1时,函数在[0,+∞)上单调递增,
∴f(x)在[0,+∞)上的最小值为f(0)=0;
a>1时,f′(x)=ex-a=0,x=lna,
∴函数在[0,lna)上单调递减,(lna,+∞)上单调递增,
∴x=lna时,f(x)在[0,+∞)上的最小值为f(lna)=a-alna-1;
(Ⅲ)证明:设t(x)=ex-x-1,
则t′(x)=ex-1,令t′(x)=0得:x=0.
在x<0时t′(x)<0,f(x)递减;在x>0时t′(x)>0,f(x)递增.
∴t(x)最小值为t(0)=0,故ex≥x+1.
取x=-$\frac{i}{2n}$,i=1,3,…,2n-1,得1-$\frac{i}{2n}$≤${e}^{-\frac{i}{2n}}$,即($\frac{2n-i}{2n}$)n≤${e}^{-\frac{i}{2}}$,
累加可得$(\frac{1}{2n})^{n}$+$(\frac{3}{2n})^{n}$+…+$(\frac{2n-1}{2n})^{n}$≤${e}^{-\frac{2n-1}{2}}$+…+${e}^{-\frac{1}{2}}$=$\frac{{e}^{-\frac{1}{2}}(1-{e}^{-n})}{1-{e}^{-1}}$<$\frac{\sqrt{e}}{e-1}$,
∴${1^n}+{3^n}+…+{(2n-1)^n}<\frac{{\sqrt{e}}}{e-1}{(2n)^n}$.
点评 本题考查导数的几何意义,考查函数的单调性与最值,考查不等式的证明,综合性强,难度大,解答的关键是合理地运算导数性质进行等价转化,是压轴题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com