【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边, .
(1)求角B的大小;
(2)若 ,求a+c的最大值.
【答案】
(1)解:由题意得, ,
由正弦定理得, ,
所以 ,
则 ,
化简得, ,
又sinA≠0,则 ,
即 ,
由于B∈(0,π),所以
(2)解:由(1)和余弦定理得,b2=a2+c2﹣2accosB,
又b= ,化简得a2+c2﹣ac=3
所以 ,
解得a+c≤ ,当且仅当a=c取等号
所以当 时,a+c的最大值为
【解析】(1)由正弦定理化简已知的等式,由内角和定理、诱导公式、两角和差的正弦公式化简后,由内角的范围和特殊角的三角函数值求出B;(2)由(1)和余弦定理列出方程化简后,利用完全平方公式和基本不等式求出a+c的最大值.
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.
科目:高中数学 来源: 题型:
【题目】一直线l过直线l1:3x﹣y=3和直线l2:x﹣2y=2的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为 的圆C相切,求圆C的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)= ,且g(x)=a2x+a﹣2x﹣2mf(x)在[1,+∞)上的最小值为﹣2,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计算题
(1)已知cos( +x)= ,( <x< ),求 的值.
(2)若 , 是夹角60°的两个单位向量,求 =2 + 与 =﹣3 +2 的夹角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,设向量 =(a, ), =(cosC,c﹣2b),且 ⊥ .
(Ⅰ)求角A的大小;
(Ⅱ)若a=1,求△ABC的周长l的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}、{bn}满足:a1= ,an+bn=1,bn+1= .
(1)求a2 , a3;
(2)证数列{ }为等差数列,并求数列{an}和{bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1 , 求实数λ为何值时4λSn<bn恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若把函数y=sin(ωx﹣ )的图象向左平移 个单位,所得到的图象与函数y=cosωx的图象重合,则ω的一个可能取值是( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)
求b关于a的函数关系式,并写出定义域;
证明:b>3a;
若, 这两个函数的所有极值之和不小于,求a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校设有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两班学生中分别抽取8名和6名测试他们的数学与英语成绩(单位:分),用表示,下面是乙班6名学生的测试分数: , , , , , ,当学生的数学、英语成绩满足,且时,该学生定为优秀生.
(Ⅰ)已知甲班共有80名学生,用上述样本数估计乙班优秀生的数量;
(Ⅱ)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名为优秀生的概率;
(Ⅲ)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为,求的分布列及其数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com