精英家教网 > 高中数学 > 题目详情
已知函数f (x)=f (p-x),且当时,f (x)=x+sinx,设a=f (1),b=f (2),c=f (3),则(  )
A.a<b<cB.b<c<aC.c<b<a D.c<a<b
D
解:∵函数y=f(x)满足f(x)=f(π-x),
∴函数y=f(x)的图象关于直线x=π 2 对称,
因为当 x∈(0,π/ 2 )时,f(x)=x+sinx,
所以f′(x)=1+cosx>0在(0,π/ 2 )上恒成立,
所以函数在(0,π/2 )上是增函数,
所以函数y=f(x)在( π /2 ,π )上是减函数.
因为2距离对称轴最近,其次是1,最远的时3,
所以根据函数的有关性质可得:f(3)<f(1)<f(2),即 c<a<b,
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(其中为自然对数的底数,常数).
(1)若对任意恒成立,求正实数的取值范围;
(2)在(1)的条件下,当取最大值时,试讨论函数在区间上的单调性;
(3)求证:对任意的,不等式成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用白铁皮做一个平底、圆锥形盖的圆柱形粮囤,粮囤容积为(不含锥形盖内空间),盖子的母线与底面圆半径的夹角为,设粮囤的底面圆半径为R,需用白铁皮的面积记为(不计接头等)。
(1)将表示为R的函数;
(2)求的最小值及对应的粮囤的总高度。(含圆锥顶盖)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,不等式 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)在定义域内可导,y=f (x)的图象如图1所示,则导函数的图象可能为(   )


 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)若上存在单调递增区间,求的取值范围;
(2)当a=1时,求上的最值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若的极值点,求的极值;
(Ⅱ)若函数上的单调递增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=(x-3)ex的单调递增区间是(    )
A.(-∞,2)B.(0,3)
C.(1,4)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递减区间是            。

查看答案和解析>>

同步练习册答案