精英家教网 > 高中数学 > 题目详情
如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是(  )
A.①③    B.②C.②④D.①②④
A

试题分析:只有一条直线垂直平面内的两条相交直线时,才可以得到这条直线垂直于这个平面。①三角形的任意两边都相交,所以可以;②梯形的任意两边不一定相交,所以不一定;③圆的两条直径一定相交,所以可以;④正六边形的两条边不一定相交,所以不可以。因此选A。
点评:只有一条直线垂直平面内的两条相交直线,才可以得到这条直线垂直于这个平面。一定要注意相交这个条件。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,底面为梯形,,,,点在棱上,且

(1)求证:平面⊥平面
(2)求平面和平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;(6分)
(2)求证:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为________. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知m、是直线,a、β是平面,给出下列命题:
(1)若l垂直于α内两条相交直线,则l⊥α;
(2)若l平行于α,则l平行于α内的所有直线;
(3)若mα,lβ,且l⊥m,则α⊥β;
(4)若lβ,且l⊥α,则α⊥β;
(5)若mα,lβ,且α∥β,则l∥m.
其中正确的命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间三条直线异面,且异面,则(  )
A.异面.B.相交.
C.平行.D.异面、相交、平行均有可能.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.

(I)求证:A1C//平面AB1D;
(II)求二面角B—AB1—D的大小;
(III)求点C到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若两条直线都与一个平面平行,则这两条直线的位置关系是(  )
A.平行B.相交C.异面D.以上均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有两条不同的直线m,n与两个不同的平面α,β,下列命题正确的是(  ).
A.m∥α,n∥β,且α∥β,则m∥n
B.m⊥α,n⊥β,且α⊥β,则m∥n
C.m∥α,n⊥β,且α⊥β,则m∥n
D.m⊥α,n∥β,且α∥β,则m⊥n

查看答案和解析>>

同步练习册答案