【题目】在△ABC中,内角A,B,C所对的边分别是a,b,c.已知bsinA=3csinB,a=3, .
(1)求b的值;
(2)求 的值.
【答案】
(1)解:在△ABC中,有正弦定理 ,可得bsinA=asinB,
又bsinA=3csinB,可得a=3c,又a=3,所以c=1.
由余弦定理可知:b2=a2+c2﹣2accosB, ,
即b2=32+12﹣2×3×cosB,
可得b= .
(2)解:由 ,可得sinB= ,
所以cos2B=2cos2B﹣1=﹣ ,
sin2B=2sinBcosB= ,
所以 = = =
【解析】(1)直接利用正弦定理推出bsinA=asinB,结合已知条件求出c,利用余弦定理直接求b的值;(2)利用(Ⅰ)求出B的正弦函数值,然后利用二倍角公式求得正弦、余弦函数值,利用两角差的正弦函数直接求解 的值.
【考点精析】认真审题,首先需要了解两角和与差的余弦公式(两角和与差的余弦公式:),还要掌握两角和与差的正弦公式(两角和与差的正弦公式:)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知直线()与轴交于点,动圆与直线相切,并且与圆相外切,
(1)求动圆的圆心的轨迹的方程;
(2)若过原点且倾斜角为的直线与曲线交于两点,问是否存在以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,倾斜角为α的直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρcos2θ-4sin θ=0.
(1)写出直线l的普通方程和曲线C的直角坐标方程;
(2)已知点P(1,0).若点M的极坐标为,直线l经过点M且与曲线C相交于A,B两点,设线段AB的中点为Q,求|PQ|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均不为零的数列{an},定义向量 , ,n∈N* . 下列命题中真命题是( )
A.若?n∈N*总有 ∥ 成立,则数列{an}是等差数列
B.若?n∈N*总有 ∥ 成立,则数列{an}是等比数列
C.若?n∈N*总有 ⊥ 成立,则数列{an}是等差数列
D.若?n∈N*总有 ⊥ 成立,则数列{an}是等比数列
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)在区间D上是增函数,且函数y=在区间D上是减函数,则称函数f(x)是区间D上的“H函数”.对于命题:
①函数f(x)=-x+是区间(0,1)上的“H函数”;
②函数g(x)=是区间(0,1)上的“H函数”.下列判断正确的是( )
A. 和均为真命题 B. 为真命题,为假命题
C. 为假命题,为真命题 D. 和均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零向量,满足(2-)⊥,集合A={x|x2+(||+||)x+||||=0}中有且仅有唯一一个元素.
(1)求向量,的夹角θ;
(2)若关于t的不等式|-t|<|-m|的解集为空集,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合.对于的一个子集,若存在不大于的正整数,使得对于中的任意一对元素,都有,则称具有性质.
(Ⅰ)当时,试判断集合和是否具有性质?并说明理由.
(Ⅱ)若时,
①若集合具有性质,那么集合是否一定具有性质?并说明理由;
②若集合具有性质,求集合中元素个数的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)从区间内任意选取一个实数,求的概率;
(2)从区间内任意选取一个整数,求的概率
【答案】(1) .(2) .
【解析】试题(1)根据几何概型概率公式,分别求出满足不等式的的区间长度与区间总长度,求比值即可;(2) 区间内共有个数,满足的整数为共有 个,根据古典概型概率公式可得结果.
试题解析: (1)∵,∴,
故由几何概型可知,所求概率为.
(2)∵,∴,
则在区间内满足的整数为5,6,7,8,9,共有5个,
故由古典概型可知,所求概率为.
【方法点睛】本题題主要考查古典概型及“区间型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,区间型,求与区间有关的几何概型问题关鍵是计算问题题的总区间 以及事件的区间;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.
【题型】解答题
【结束】
18
【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).
(1)求函数f(x)的解析式;
(2)若f(2m+5)<f(3m+3),求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com