精英家教网 > 高中数学 > 题目详情
4.如图,在四棱锥F-ABCD中,侧面ABF⊥底面ABCD,四边形ABCD为矩形,且AB=2,AD=AF=1,∠BAF=60°.O、P分别为AB、CB的中点,M为△OBF的重心.
(1)求证:PM∥平面AFC
(2)求证:平面ADF⊥平面CBF.

分析 (1)由三角形的重心的定义,结合中位线定理和面面平行的判定和性质,即可得证;
(2)过F在平面BCF中作l∥BC,证得l为平面ADF和平面CBF的交线,再由面面垂直的性质定理,可得BC⊥平面ABF,由线面垂直的性质和面面垂直的定义,即可得到.

解答 证明:(1)M为△OBF的重心,连接OM,延长交BF于H,
连接PH,OP,
由PH为△BFC的中位线,即有PH∥CF,
由OP为△ABC的中位线,即有OP∥AC,
即有平面ACF∥平面OHP,
PM?平面OHP,则PM∥平面AFC;
(2)过F在平面BCF中作l∥BC,由AD∥BC,
可得l∥AD,
则平面ADF和平面BCF的交线为l,
侧面ABF⊥底面ABCD,由BC⊥AB,
可得BC⊥平面ABF,即有BC⊥BF,
即有l⊥BF,
同理可得l⊥AF,
则∠AFB为平面ADF和平面CBF所成的角,
在△ABF中,BF=$\sqrt{A{B}^{2}+A{F}^{2}-2AB•AF•cos60°}$
=$\sqrt{4+1-2×2×1×\frac{1}{2}}$=$\sqrt{3}$,
即有∠AFB=90°,
则平面ADF⊥平面CBF.

点评 本题考查线面平行的判定和面面垂直的判定,考查空间线面的位置关系,考查运算和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知Sn为数列{an}的前n项和,且Sn=2an+n2-3n-1,n=l,2,3…
(1)求证:数列{an-2n}为等比数列:
(2)设bn=an•cosnπ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x$\left\{\begin{array}{l}{|x+2|+a,x≤0}\\{lgx,x>0}\end{array}\right.$有三个不同零点,则实数a的取值范围为(  )
A.[-2,0)B.[-2,+∞)C.(-2,0)D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条光线从A(-2,-3),经y轴上B点反射后与圆(x+3)2+(y-2)2=1相切于点C,则|AB+|BC|的长度为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a、b、c分别为△ABC内角A、B、C的对边,a=n,b=n+1,c=n+2.n∈N,C=2A.
(1)求n的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某旅行社为推广全民旅游计划,对某风景区旅游费用标准执行以下优惠:当人数不超过25人时,人均费用为1500元;当人数超过25人时,每增加1人,人均费用下降20元,但最低人均费用不能低于1000元.解答下列问题:
(1)已知某单位组织30人参加了该旅游计划,求人均费用是多少元?
(2)设某单位共有x(人),共支付了总旅游费用为y(元),求y与x之间的函数关系式;
(3)已知该单位现有45人,本次旅游至少去了26人,求该单位最多的旅游费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某电信公司规定,互联网拨号上网用户资源如表:
项目方式基本费网络使用费通信费
96300.05元/min0.02元/min
169100元/月1元/h
注:①基本费为每户每月固定缴纳的网络使用费,基本费包含一定量的网络使用时间,用户每月网络使用费不超过基本费的,只收基本费,每月网络使用费超过基本费的,同时加收超过基本费的部分;②月上网费=月基本费+月网络使用费+月通信费.
(1)若某用户以“963”方式上网,上网多长时间,网络使用费达到100元;
(2)分别写出以“963”方式和“169”方式上网的月上网费y(元)与月上网时间t(h)之间的函数关系式;
(3)若某用户平均每月上网时间为120h,试问他用哪种方式上网合算.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若p,q,t为正实数,试比较$\frac{p+t}{q+t}$与$\frac{p}{q}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知棱长为1的正方体AC1,E、F分别为B1C1和C1D1的中点.
(1)求证:E、F、B、D共面;
(2)求证:BE、DF、CC1三线共点;
(3)求棱台C1EF-CBD的体积.

查看答案和解析>>

同步练习册答案