分析 作OD⊥AB于D,OE⊥AC于E,由垂径定理得D、E分别为AB、AC的中点,利用三角函数在直角三角形中的定义,可得cos∠OAD=$\frac{|\overrightarrow{AD}|}{|\overrightarrow{AO}|}$,由向量数量积的定义得$\overrightarrow{AO}$•$\overrightarrow{AB}$=|$\overrightarrow{AO}$|•|$\overrightarrow{AB}$|cos∠OAD=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|=$\frac{1}{2}$|$\overrightarrow{AB}$|2,同理可得$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$|$\overrightarrow{AC}$|2,而$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\overrightarrow{AO}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$),展开后代入前面的数据即可得到$\overrightarrow{AO}•\overrightarrow{BC}$的值.
解答 解:
作OD⊥AB于D,OE⊥AC于E,
∵⊙O中,OD⊥AB,
∴AD=$\frac{1}{2}$AB,cos∠OAD=$\frac{|\overrightarrow{AD}|}{|\overrightarrow{AO}|}$,
因此,$\overrightarrow{AO}$•$\overrightarrow{AB}$=|$\overrightarrow{AO}$|•|$\overrightarrow{AB}$|cos∠OAD=|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|=$\frac{1}{2}$|$\overrightarrow{AB}$|2=$\frac{25}{2}$;
同理可得$\overrightarrow{AO}$•$\overrightarrow{AC}$=$\frac{1}{2}$|$\overrightarrow{AC}$|2=$\frac{49}{2}$.
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\overrightarrow{AO}$•($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\overrightarrow{AO}$•$\overrightarrow{AC}$-$\overrightarrow{AO}$•$\overrightarrow{AB}$=$\frac{49}{2}$-$\frac{25}{2}$=12.
故答案为:12.
点评 本题给出三角形的外接圆的圆心为0,在已知边长的情况下求$\overrightarrow{AO}•\overrightarrow{BC}$的值,着重考查了圆中垂直于弦的直径性质、三角函数在直角三角形中的定义和向量数量积公式及其性质等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 乙未年 | B. | 丁酉年 | C. | 戊戌年 | D. | 己亥年 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com