精英家教网 > 高中数学 > 题目详情
19.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量$\overrightarrow m=(b-c,c-a)$,$\overrightarrow n=(b,c+a)$,且$\overrightarrow m⊥\overrightarrow n$,b和c的等差中项为$\frac{1}{2}$,则△ABC面积的最大值为$\frac{{\sqrt{3}}}{16}$.

分析 根据$\overrightarrow m⊥\overrightarrow n$,利用向量的性质建立关系与余弦定理结合可得A的大小.b和c的等差中项为$\frac{1}{2}$,根据等差中项性质,可得b+c=1.△ABC面积S=$\frac{1}{2}$bcsinA,利用基本不等式可得最大值.

解答 解:向量$\overrightarrow m=(b-c,c-a)$,$\overrightarrow n=(b,c+a)$,
∵$\overrightarrow m⊥\overrightarrow n$,
∴b(b-c)+(c-a)(c+a)=0.
得:b2-bc=-c2+a2.即-a2+b2+c2=bc
由余弦定理:b2+c2-a2=2bccosA
可是:bc=2bccosA.
∴cosA=$\frac{1}{2}$.
∵0<A<π
∴A=$\frac{π}{3}$
又b和c的等差中项为$\frac{1}{2}$,根据等差中项性质,
可得b+c=1.
∴b+c$≥2\sqrt{bc}$,(当且仅当b=c时取等号)
可得:bc≤$\frac{1}{4}$.
则△ABC面积S=$\frac{1}{2}$bcsinA≤$\frac{1}{2}×\frac{1}{4}×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{16}$.
故答案为:$\frac{\sqrt{3}}{16}$.

点评 本题考查了向量垂直的运算,余弦定理的运算,等差中项性质以及不等式的运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(x∈R),又f(α)=2,f(β)=2,且|α-β|的最小值是$\frac{π}{2}$,则正数ω的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$e=\frac{1}{2}$,左右焦点分别为F1,F2,以椭圆短轴为直径的圆与直线$x-y+\sqrt{6}=0$相切.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点F1、斜率为k1的直线l1与椭圆E交于A,B两点,过点F2、斜率为k2的直线l2与椭圆E交于C,D两点,且直线l1,l2相交于点P,若直线OA,OB,OC,OD的斜率kOA,kOB,kOC,kOD满足kOA+kOB=kOC+kOD,求证:动点P在定椭圆上,并求出此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在平面直角坐标系中,$\overrightarrow{a}$=(-6,8),$\overrightarrow{a}$•$\overrightarrow{b}$=-24,则向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影是$-\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且满足bcosC+$\frac{1}{2}$c=a.
(1)求△ABC的内角B的大小;
(2)若△ABC的面积S=$\frac{\sqrt{3}}{4}$b2,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知某海滨浴场的海浪高度(单位:米)是时间(单位:小时,0≤t≤24)的函数,记作y=f(t),如表是某日各时的浪高数据:
 t(时) 0 1215  18 2124 
 y(米) 1.5 1.00.5  1.0 1.5 1.0 0.51.0 1.5 
(Ⅰ)在如图的网格中描出所给的点;
(Ⅱ)观察图,从y=at+b,y=at2+bt+c,y=Acos(ωx+p)中选择一个合适的函数模型,并求出该拟合模型的解析式;
(Ⅲ)依据规定,当海浪高度高于1.25米时蔡对冲浪爱好者开放,请依据(Ⅱ)的结论判断一天内的8:00到20:00之间有多长时间可供冲浪爱好者进行活动.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{lnx}{x}$.
(1)求f(x)的最大值;
(2)设a,b∈R,a>b>c(其中e是自然对数的底数),用分析法求证:ba>ab

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某公司为对本公司的160名员工的身体状况进行调查,先将员工随机编号为1,2,3,…,159,160,采用系统抽样的方法(等间距地抽取,每段抽取一个个体)将抽取的一个样本.已知抽取的员工中最小的两个编号为5,21,那么抽取的员工中,最大的编号应该是(  )
A.141B.142C.149D.150

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,AB=5,AC=7,若O为△ABC外接圆的圆心,则$\overrightarrow{AO}•\overrightarrow{BC}$的值为12.

查看答案和解析>>

同步练习册答案