精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{lnx}{x}$.
(1)求f(x)的最大值;
(2)设a,b∈R,a>b>c(其中e是自然对数的底数),用分析法求证:ba>ab

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值即可;
(2)问题转化为证明$\frac{lnb}{b}$>$\frac{lna}{a}$,根据函数的单调性证明即可.

解答 (1)解:函数的定义域是(0,+∞)  f′(x)=$\frac{1-lnx}{x2}$,
∴当x>e时,f′(x)<0,
∴函数f(x)在(e,+∞)上单调递减.
当0<x<e时,f′(x)>0,
∴函数f(x)在(0,e)上单调递增.
∴f(x)的最最大值为f(e)=$\frac{1}{e}$…(5分)
(2)证明:∵a>b>e,ba>0,ab>0,
∴要证ba>ab,只需证aln b>bln a,只需证$\frac{lnb}{b}$>$\frac{lna}{a}$,
由(1)可知f(x)在(e,+∞)上单调递减.
∴当a>b>e时,有f(b)>f(a),
即$\frac{lnb}{b}$>$\frac{lna}{a}$.得证.…(10分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知等比数列{an}中a1=2,公比q满足lg3•log3q=lg2.
(1)试写出这个数列的通项公式;
(2)若bn=an+n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是38cm2,体积是12cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为三个内角A,B,C所对的边,设向量$\overrightarrow m=(b-c,c-a)$,$\overrightarrow n=(b,c+a)$,且$\overrightarrow m⊥\overrightarrow n$,b和c的等差中项为$\frac{1}{2}$,则△ABC面积的最大值为$\frac{{\sqrt{3}}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列求导运算正确的是(  )
A.(log2x)′=$\frac{1}{xln2}$B.($\frac{cosx}{x}$)′=$\frac{xsinx-cosx}{x}$
C.(10x)′=10xlgeD.(x+$\sqrt{x}$)′=1-$\frac{1}{2\sqrt{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某数学兴趣小组35名学生的成绩的茎叶图如图所示,若将学生的成绩由高到低编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[70,85)上的学生人数是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC的内角A,B,C所对的边分别为a,b,c,a2+b2-c2=6$\sqrt{3}$-2ab,且C=60°,则△ABC的面积为(  )
A.2B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a>0,($\frac{a}{\sqrt{x}}$-x)6展开式的常数项为240,则${∫}_{-a}^{a}$(x2+x+$\sqrt{4-{x}^{2}}$)dx=$\frac{16}{3}$+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=Asin(ωx+φ),其中ω>0,A>0,-$\frac{π}{2}$<φ<0,x∈R且函数f(x)的最小值为-$\frac{\sqrt{2}}{2}$,相邻两条对称轴之间的距离为$\frac{π}{2}$,满足f($\frac{π}{4}$)=$\frac{1}{2}$
(1)求f(x)的解析式;
(2)若对任意实数x∈[$\frac{π}{6}$,$\frac{π}{3}$],不等式f(x)-m<$\frac{3}{2}$恒成立,求实数m的取值范围;
(3)设0<x≤$\frac{π}{2}$,且方程f(x)=m有两个不同的实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案