精英家教网 > 高中数学 > 题目详情
数列是递增的等差数列,且
(1)求数列的通项公式;
(2)求数列的前项和的最小值;
(3)求数列的前项和
(1) ;(2);(3)

试题分析:(1)这是等差数列的基础题型,可直接利用基本量(列出关于的方程组)求解,也可利用等差数列的性质,这样可先求出,然后再求出,得通项公式;(2)等差数列的前是关于的二次函数的形式,故可直接求出,然后利用二次函数的知识得到最小值,当然也可根据数列的特征,本题等差数列是首项为负且递增的数列,故可求出符合的最大值,这个最大值就使得最小(如果,则都使最小);(3)由于前几项为负,后面全为正,故分类求解(目的是根据绝对值定义去掉绝对值符号),特别是时,
,这样可利用第(2)题的结论快速得出结论.
试题解析:(1) 由,得是方程的二个根,,此等差数列为递增数列,,公差      4分
(2)
        8分
(3)由,解得,此数列前四项为负的,第五项为0,从第六项开始为正的.        10分
时,
.    12分
时,
.        14分项和公式;(3)绝对值与分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

数列{an}(n∈N)中,a1=0,当3an<n2时,an+1=n2,当3an>n2时,an+1=3an.求a2,a3,a4,a5,猜测数列的通项an并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和为
(1)若数列是首项与公差均为的等差数列,求
(2)若且数列均是公比为的等比数列,
求证:对任意正整数

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知直角的三边长,满足 
(1)已知均为正整数,且成等差数列,将满足条件的三角形的面积从小到大排成一列,且,求满足不等式的所有的值;
(2)已知成等比数列,若数列满足,证明数列中的任意连续三项为边长均可以构成直角三角形,且是正整数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知无穷数列的前项和为,且满足,其中是常数.
(1)若,求数列的通项公式;
(2)若,且,求数列的前项和
(3)试探究满足什么条件时,数列是公比不为的等比数列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设Sn为等差数列{an}的前n项和,已知S5=5,S9=27,则S7=       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知.我们把使乘积为整数的数n叫做“优数”,则在区间(1,2004)内的所有优数的和为(  )
A.1024B.2003 C.2026D.2048

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等差数列的前项和记为,若,则的最大值为      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列{an}的前n项和为Sn,若a2=3,a6=11,则S7=(   )
A.91B.C.98D.49

查看答案和解析>>

同步练习册答案