精英家教网 > 高中数学 > 题目详情
已知偶函数f(x)的定义域为R,且在(-∞,0)上是增函数,M=f(
3
4
)
,N=f(a2-a+1)(a∈R),则M与N的大小关系(  )
A.M≥NB.M≤NC.M<ND.M>N
∵偶函数f(x)的定义域为R,且在(-∞,0)上是增函数,
∴f(x)在(0,+∞)上是减函数,
又a2-a+1=(a-
1
2
)
2
+
3
4
3
4

∴N=f(a2-a+1)≤f(
3
4
)=M,
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
1-
1
x
x≥1
1
x
-10<x<1.

(I)当0<a<b,且f(a)=f(b)时,求
1
a
+
1
b
的值;
(II)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b],若存在,则求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是单调减函数.
(1)若a>0,比较f(a+
3
a
)
与f(3)的大小;
(2)若f(|a-1|)>f(3),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
x+
1
x
,x∈[-2,-1)
-2,x∈[-1,
1
2
)
x-
1
x
,x∈[
1
2
,2]

(1)判断当x∈[-2,1)时,函数f(x)的单调性,并用定义证明之;
(2)求f(x)的值域
(3)设函数g(x)=ax-2,x∈[-2,2],若对于任意x1∈[-2,2],总存在x0∈[-2,2],使g(x0)=f(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列函数中,既是奇函数,又在R上是增函数的是(  )
A.y=x
2
3
B.y=-x|x|C.y=2x+2-xD.y=2x-2-x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=
x2-ax+5,x<1
1+
1
x
,x≥1
在定义域R上单调,则实数a的取值范围为(  )
A.(-∞,2]B.[2,+∞)C.[4,+∞)D.[2,4]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=(
1
ax-1
+
1
2
)x2+bx+6(a,b为常数,a>1)
,且f(lglog81000)=8,则f(lglg2)的值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设f(x)=
x+3,(x>10)
f(x+5),(x≤10)
,则f(5)的值为(  )
A.16B.18C.21D.24

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,
        

查看答案和解析>>

同步练习册答案