(本题满分12分)
已知函数f(x)=
+2sin2x
(1)求函数f(x)的最大值及此时x的值;
(2)求函数f(x)的单调递减区间。
x=kπ+
(k∈Z)时,f(x)取得最大值2
-1,[kπ+
,kπ+
,(kπ+
,kπ+![]()
解:(1)∵cos3x=4cos3x-3cosx,则
=4cos2x-3=2cos2x-1
∴f(x)=2cos2x-1+2sin2x
=2
sin(2x+
)-1 ……………………4分
在2x+
=2kπ+
时,f(x)取得最大值2
-1
即在x=kπ+
(k∈Z)时,f(x)取得最大值2
-1 ……………………6分
(2)∵f(x)=2
sin(2x+
)-1
要使f(x)递减,x满足2kπ+
≤2x+
≤2kπ+![]()
即kπ+
≤x≤kπ+
(k∈Z)
又∵cosx≠0,即x≠kπ+
(k∈Z) ……………………10分
|
|
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com