精英家教网 > 高中数学 > 题目详情
17.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,则目标函数z=2x+2y的取值范围是(  )
A.[1,4]B.[1,2]C.[2,4]D.[-$\frac{1}{4}$,2]

分析 作出约束条件的可行域,求出三个顶点坐标,代入目标函数求解即可.

解答 解:作出可行域,令μ=x+2y,由图可知,可行域三个顶点分别为A(0,0);B(-$\frac{1}{2}$,$\frac{1}{2}$);C(0,1),将三个点的坐标分别代入μ=x+2y得μ=0,$\frac{1}{2}$,2,所以0≤μ≤2,故20≤z≤22,即1≤z≤4.

故选:A.

点评 本题考查线性规划的简单应用,利用角点围堵法,是解题的常用方法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设α:m+1≤x≤2m+7(m∈R),β:1≤x≤3,若α是β的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.给出如下四个命题:
①若“p∨q”为真命题,则p、q均为真命题;
②命题“?x∈[0,+∞),x3+x≥0”的否定是“?x∈[0,+∞),x03+x0<0”;
③命题“若x=4且y=2,则x+y=6”的否命题为真命题;
④在△ABC中,“A>30°”是“sinA>$\frac{1}{2}$”的充要条件.
其中正确命题的序号是②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=2sin2x-2cosx+5的最大值为$\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知函数f(x)=$\sqrt{3}sinxcosx+{sin^2}x+\frac{1}{2}$(x∈R).
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当$x∈[-\frac{π}{12},\frac{5π}{12}]$时,求函数f(x)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$=($\sqrt{3}$,cos4ωx),$\overrightarrow{b}$=(sin4ωx,1)(ω>0),令f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$且f(x)的周期为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)若x∈[0,$\frac{π}{4}$]时f(x)+m≤2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.方程f(x)=x的根称为函数f(x)的不动点,若函数$f(x)=\frac{x}{a(x+5)}$有唯一不动点,且x1=1613,${x_{n+1}}=\frac{1}{{f(\frac{1}{x_n})}}$(n∈N*),则x2016=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的不等式ax2+bx+c>0的解集为{x|2<x<3},则关于x的不等式cx2-bx+a<0的解集为(-∞,-$\frac{1}{6}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和Sn满足Sn=$\frac{1}{2}$×3n+1-$\frac{3}{2}$,数列{bn}满足bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案