精英家教网 > 高中数学 > 题目详情

【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆 两点,交此抛物线于 两点,其中 在第一象限, 在第二象限.

(1)求该抛物线的方程;

(2)是否存在直线,使的等差中项?若存在,求直线的方程;若不存在,请说明理由.

【答案】(1)抛物线的方程为 (2)存在满足要求的直线,其方程为

【解析】试题分析:(1)圆方程可化为可化为 圆心的坐标为 抛物线的方程为;(2)由等差数列性质可得

,再由 存在满足要求的直线,其方程为.

试题解析:

(1)可化为

根据已知抛物线的方程为).

∵圆心的坐标为,∴,解得.

∴抛物线的方程为.

(2)∵的等差中项,圆的半径为2,∴.

.

由题知,直线的斜率存在,故可设直线的方程为

,得

.

,解得.

∴存在满足要求的直线,其方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+x,x∈R,当0≤θ≤π时,f(mcosθ)+f(sinθ﹣2m)<0恒成立,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数在点处切线方程为y=3x+b,求a,b的值;

(Ⅱ)当a>0时,求函数在[1,2]上的最小值;

(Ⅲ)设,若对任意 ,均存在,使得,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)…[90,100]后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ) 求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(Ⅱ) 估计这次考试的及格率(60分及以上为及格)和平均分;
(Ⅲ) 设学生甲、乙的成绩属于区间[40,50),现从成绩属于该区间的学生中任选两人,求甲、乙中至少有一人被选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者. 从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是: .

(Ⅰ)求图中的值,并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人. 记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= (其中p2+q2≠0),且存在公差不为0的无穷等差数列{an},使得函数在其定义域内还可以表示为f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1 , a2的值(用p,q表示);
(2)求{an}的通项公式;
(3)当n∈N*且n≥2时,比较(an1an与(an 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是(
A.各个面都是三角形的几何体是三棱锥
B.一平面截一棱锥得到一个棱锥和一个棱台
C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥
D.圆锥的顶点与底面圆周上的任意一点的连线都是母线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 (n∈N*)的展开式中第五项的系数与第三项的系数的比是10:1.
(1)求在展开式中含x 的项;
(2)求展开式中系数最大的项.

查看答案和解析>>

同步练习册答案