45°
分析:先利用正弦定理,将边转化为角,再利用三角形的内角和及和角的三角函数,变形展开,化简即可得到结论.
解答:∵△ABC的外接圆半径为R,且2R(sin
2A-sin
2C)=(

a-b)sinB
∴2R(sin
2A-sin
2C)=

×2RsinAsinB-2RsinBsinB
∴sinAsinA-sinCsinC=

×sinAsinB-sinBsinB
∴sinAsinA-sin(A+B)
2=

×sinAsinB-sinBsinB
∴sinAsinA-sinAsinAcosBcosB-sinBsinBcosAcosA-2sinAcosAsinBcosB=

×sinAsinB-sinBsinB
∴sinAsinA(1-cosBcosB)-sinBsinBcosAcosA-2sinAcosAsinBcosB=

×sinAsinB-sinBsiinB
∴sinAsinAsinBsinB+sinBsinB(1-cosAcosA)-2sinAcosAsinBcosB=

×sinAsinB
∴2sinAsinB(sinAsinB-cosAcosB-

)=0
∴2sinAsinB[-cos(A+B)-

]=0
∵sinA≠0,sinB≠0,
∴-cos(A+B)-

=0
∴cos(A+B)=-

∴A+B=135°
∴C=45°
故答案为:45°.
点评:本题重点考查正弦定理的运用,考查三角式的恒等变形,属于基础题.