精英家教网 > 高中数学 > 题目详情
11、已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称.若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是(  )
分析:由函数y=f(x-1)的图象关于点(1,0)对称,结合图象平移的知识可知函数y=f(x)的图象关于点(0,0)对称,从而可知函数y=f(x)为奇函数,由f(x2-6x+21)+f(y2-8y)<0恒成立,可把问题转化为(x-3)2+(y-4)2<4,借助于的有关知识可求
解答:解:∵函数y=f(x-1)的图象关于点(1,0)对称
∴函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)为奇函数,则f(-x)=-f(x)
又∵f(x)是定义在R上的增函数且f(x2-6x+21)+f(y2-8y)<0恒成立
∴(x2-6x+21)<-f(y2-8y)=f(8y-y2 )恒成立
∴x2-6x+21<8y-y2
∴(x-3)2+(y-4)2<4恒成立
设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,
则x2+y2表示在半圆内任取一点与原点的距离的平方
结合圆的知识可知13<x2+y2<49
故选 C
点评:本题考查了函数图象的平移、函数的奇偶性、单调性及圆的有关知识,解决问题的关键是把“数”的问题转化为“形”的问题,借助于图形的几何意义减少了运算量,体现“数形结合:及”转化”的思想在解题中的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案