精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,为空间四点.在中,.等边三角形为轴运动.
(1)当平面平面时,求
(2)当转动时,证明总有

(1). (2)证明:见解析。

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题11分)如图,三棱锥C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分别是BC、AC的中点。

(1)求证:AC⊥BD;
(2)若CA = CB,求证:平面BCD⊥平面ABD
(3)在上找一点M,在AD上找点N,使平面MED//平面BFN,说明理由;并求出的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)如图,棱锥的底面是矩形,⊥平面

(1)求证:⊥平面
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.

(1)证明:∠PBC=90°;
(2)若PB=3,求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)如图①,直角梯形中,,点分别在上,且,现将梯形A沿折起,使平面与平面垂直(如图②).
(1)求证:平面
(2)当时,求二面角的大小.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是 AB、PC的中点.
(1) 求证:EF∥平面PAD;
(2) 求证:EF⊥CD;
(3) 若∠PDA=45°,求EF与平面ABCD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,,AB=2.M为PD的中点.求直线PC与平面ABM所成的角的正弦值;

查看答案和解析>>

同步练习册答案