(本小题满分12分)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.![]()
(1)证明:∠PBC=90°;
(2)若PB=3,求直线AB与平面PBC所成角的正弦值.
(1)取AD中点O,连OP、OB,由已知得:OP⊥AD,OB⊥AD,
又OP∩OB=O,∴AD⊥平面POB,∵BC∥AD,∴BC⊥平面POB,∵PB
平面POB,
∴BC⊥PB,即∠PBC=90°.
(2)如图,![]()
以O为坐标原点,建立空间直角坐标系O-xyz,则A(1,0,0),B(0,
,0),C(-1,
,0),由PO=BO=
,PB=3,得∠POB=120°,∴∠POz=30°,∴P(0,-
,
),则
=(-1,
,0),
=(-1,0,0),
=(0,
,-
),设平面PBC的法向量为n=(x,y,z),则
,取z=
,则n=(0,1,
),
设直线AB与平面PBC所成的角为θ,则sinθ=|cos〈
,n〉|=
.
解析
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,在四棱锥
中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点![]()
求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;(6分)
(2)求证:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,在三棱锥
中,面
面
,
是正三角形,
,
.
(Ⅰ)求证:
;
(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;
(Ⅲ)求异面直线
与
所成角的余弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且
,垂足为E,若将
沿AM折起,使点D位于
位置,连接
,
得四棱锥
.
(1)求证:
;(2)若
,直线
与平面ABCM所成角的大小为
,求直线
与平面ABCM所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
为圆
的直径,点
、
在圆
上,且
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)设
的中点为
,求证:
平面
;
(Ⅲ)设平面
将几何体
分割成的两个锥体的体积分别为
、
,求
的值![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com