(本小题满分14分)如图,在三棱锥中,面面,是正三角形, ,.
(Ⅰ)求证:;
(Ⅱ)求平面DAB与平面ABC的夹角的余弦值;
(Ⅲ)求异面直线与所成角的余弦值.
科目:高中数学 来源: 题型:解答题
已知棱长为a的正方体ABCD—A1B1C1D1,E为BC中点.
(1)求B到平面B1ED距离
(2)求直线DC和平面B1ED所成角的正弦值. (12分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.
(1)证明:∠PBC=90°;
(2)若PB=3,求直线AB与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题分12分)
如图,在长方体中,
,为中点.
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.
(Ⅲ)若二面角的大小为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分) 已知正四棱锥P-ABCD中,底面是边长为2 的正方形,高为.M为线段PC的中点.
(Ⅰ) 求证:PA∥平面MDB;
(Ⅱ) N为AP的中点,求CN与平面MBD所成角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com