精英家教网 > 高中数学 > 题目详情

【题目】已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2= ,anbn+1+bn+1=nbn
(1)求{an}的通项公式;
(2)求{bn}的前n项和.

【答案】
(1)

解:∵anbn+1+bn+1=nbn

当n=1时,a1b2+b2=b1

∵b1=1,b2=

∴a1=2,

又∵{an}是公差为3的等差数列,

∴an=3n﹣1


(2)

由(1)知:(3n﹣1)bn+1+bn+1=nbn

即3bn+1=bn

即数列{bn}是以1为首项,以 为公比的等比数列

∴{bn}的前n项和Sn= = (1﹣3n)=


【解析】(1)令n=1,可得a1=2,结合{an}是公差为3的等差数列,可得{an}的通项公式;(2)由(1)可得:数列{bn}是以1为首项,以 为公比的等比数列,进而可得:{bn}的前n项和.;本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.
【考点精析】认真审题,首先需要了解数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}的n项和为Sn , 且a1=a2=1,{nSn+(n+2)an}为等差数列,则{an}的通项公式an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=aR).

(Ⅰ)若f(1)=2,求函数y=fx)-2x[,2]上的值域;

(Ⅱ)当a∈(0,)时,试判断fx)在(0,1]上的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是奇函数,且满足,当时,,则内是( )

A. 单调增函数,且 B. 单调减函数,且

C. 单调增函数,且 D. 单调减函数,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=x﹣ sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是(  )
A.[﹣1,1]
B.[﹣1, ]
C.[﹣ ]
D.[﹣1,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则(  )

A. f B. f

C. f D. f

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)若对于任意的,若函数在区间上有最值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数,例如要表示分段函数g(x)=总可以将g(x)表示为g(x)=xh(x-2)+(-x)h(2-x).

(1)设f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),请把函数f(x)写成分段函数的形式;

(2)已知G(x)=[(3a-1)x+4a]h(1-x)+logaxh(x-1)是R上的减函数,求a的取值范围;

(3)设F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函数F(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)是定义在R上的偶函数,且满足f(2)=1,fx+4)=2fx)+f(1),则f(3)=______

查看答案和解析>>

同步练习册答案