(Ⅰ)试用a表示点P的坐标.
(Ⅱ)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;
(Ⅲ)设min{y1,y2,…,yn}为y1,y2,…,yn中最小的一个设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试函数f(a)=min{g(a),S(a)}的表达式.
(Ⅰ)解:将y=代入椭圆方程,得=1,
化简得b2x4-a2b2x2+a2=0,
由条件,有Δ=a4b4-4a2b2=0,得ab=2
解得x=,x=- (舍去)
故P的坐标为(,)
(Ⅱ)解:∵在ΔABP中,|AB|=2,高为,
∴S(a)=·2·=2
∵a>b>0,b=,
∴a>,
即a>,得0<<1,
于是0<S(a)<2故ΔABP的面积函数S(a)的值域为(0,)
(Ⅲ)解:g(a)=c2=a2-b2=a2-,
解不等式:g(a)≥S(a),
即a2-≥,
整理得:a8-10a4+24≥0,
即(a4-4)(a4-6)≥0,
即(a4-4)(a4-6)≥0
解得:a≤2(舍去)或a≥,
故f(a)=min{g(a),S(a)}=
科目:高中数学 来源:数学教研室 题型:044
(Ⅰ)试用a表示点P的坐标.
(Ⅱ)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;
(Ⅲ)设min{y1,y2,…,yn}为y1,y2,…,yn中最小的一个.设g(a)是以椭圆C1的半焦距为边长的正方形的面积,求函数f(a)=min{g(a),S(a)}的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P.
(1)试用a表示点P的坐标;
(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;
(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个. 设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为(a>b>0),曲线C2的方程为y=,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源: 题型:
(Ⅰ)试用a表示点P的坐标.
(Ⅱ)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;
(Ⅲ)设min{y1,y2,…,yn}为y1,y2,…,yn中最小的一个设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试函数f(a)=min{g(a),S(a)}的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com