【题目】甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为 和P,且甲、乙两人各射击一次得分之和为2的概率为 .假设甲、乙两人射击互不影响,则P值为( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】北京101中学校园内有一个“少年湖”,湖的两侧有一个音乐教室和一个图书馆,如图,若设音乐教室在A处,图书馆在B处,为测量A,B两地之间的距离,某同学选定了与A,B不共线的C处,构成△ABC,以下是测量的数据的不同方案:①测量∠A,AC,BC;②测量∠A,∠B,BC;③测量∠C,AC,BC;④测量∠A,∠C,∠B. 其中一定能唯一确定A,B两地之间的距离的所有方案的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设海拔x m处的大气压强是 y Pa,y与 x 之间的函数关系式是 y=cekx,其中c,k为常量,已知某地某天在海平面的大气压为1.01×105 Pa,1 000 m高空的大气压为0.90×105 Pa,求600 m高空的大气压强(精确到0.001).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着生活水平的提高,越来越多的人参与了潜水这项活动.某潜水中心调查了100名男性与100女性下潜至距离水面5米时是否耳鸣,下图为其等高条形图:
①绘出列联表;
②根据列联表的独立性检验,能否在犯错误的概率不超过0.005的前提下认为耳鸣与性别有关系?
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查高中学生喜欢打羽毛球与性别是否有关,调查人员就“是否喜欢打羽毛球”这个问题,分别随机调查了名女生和名男生,根据调查结果得到如图所示的等高条形图:
(1)完成下列列联表:
喜欢打羽毛球 | 不喜欢打羽毛球 | 总计 | |
女生 | |||
男生 | |||
总计 |
(2)能否在犯错误的概率不超过的前提下认为喜欢打羽毛球与性别有关.
参考数表:
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数的导函数的图象,给出下列命题:
①-2是函数的极值点;
②是函数的极值点;
③在处取得极大值;
④函数在区间上单调递增.则正确命题的序号是
A. ①③ B. ②④ C. ②③ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
(1)请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,四边形ADEF为梯形,AD//FE,∠AFE=60,且平面ABCD⊥平面ADEF,AF=FE=AB==2,点G为AC的中点.
(1)求证:EG//平面ABF;
(2)求三棱锥B-AEG的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com