精英家教网 > 高中数学 > 题目详情
对于函数f(x)=lg|x-2|+1,有如下三个命题:
①f(x+2)是偶函数;
②f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;
③f(x+2)-f(x)在区间(2,+∞)上是增函数.
其中正确命题的序号是
①,②
①,②
.(将你认为正确的命题序号都填上)
分析:由f(x)=lg|x-2|+1,知f(x+2)=lg|x|+1是偶函数;由f(x)=lg|x-2|+1=
lg(x-2)+1,x>2
lg(2-x),x<2
,知f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数;f(x)=lg|x-2|+1,知f(x+2)-f(x)=lg|1+
2
x-2
|在区间(2,+∞)上是减函数.
解答:解:∵f(x)=lg|x-2|+1,
∴f(x+2)=lg|x+2-2|+1=lg|x|+1是偶函数,
故①正确;
∵f(x)=lg|x-2|+1=
lg(x-2)+1,x>2
lg(2-x),x<2

∴f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数,
故②正确;
∵f(x)=lg|x-2|+1,
f(x+2)=lg|x+2-2|+1=lg|x|+1,
∴f(x+2)-f(x)=lg|x|-lg|x-2|=lg|
x
x-2
|=lg|1+
2
x-2
|在区间(2,+∞)上是减函数,
故③不正确.
故答案为①,②.
点评:本题考查命题的真假判断,是基础题.解题时要认真审题,注意对数函数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x0,y0)(其中x0∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当x0=
x1+x2
2
时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•婺城区模拟)对于函数f(x),若存在区间M=[a,b],使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的-个“好区间”.给出下列4个函数:
①f(x)=sinx;
②f(x)=|2x-1|;
③f(x)=x3-3x;
④f(x)=lgx+l.
其中存在“好区间”的函数是
②③④
②③④
.  (填入相应函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=a x2+(b+1)x+b-2(a≠0),若存在实数 x0,使f( x0)=x0成立,则称 x0为f(x)的不动点
(1)当a=2,b=-2时,求f(x)的不动点;
(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围;
(3)在(2)的条件下判断直线L:y=ax+1与圆(x-2)2+(y+2)2=4 a2+4的位置关系.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省唐山一中高二(下)期中数学试卷(理科)(解析版) 题型:解答题

已知函数(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x,y)(其中x∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案