精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x0,y0)(其中x0∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当x0=
x1+x2
2
时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.
分析:(Ⅰ)求出f′(x)根据且f'(1)=0求出a和b的关系即可,根据自变量的取值范围及a>0,令导函数大于0得到函数的增区间,令导函数小于0得到函数的减区间,根据增减性得到函数的极值即可;
(Ⅱ)不存在,设两点A(x1,y1),B(x2,y2),代入到函数关系式中,然后求出直线AB的斜率,并求出在M的切线的斜率,两者相等得到等式,化简后令其左边设为函数g(t),求出函数g(t)的最小值,这表明在函数f(x)上不存在两点A、B使得它存在“中值伴随切线”.
解答:解:(Ⅰ)f(x)的定义域为(0,+∞),∵f′(x)=
1
x
-ax+b
,f'(1)=1-a+b=0,∴b=a-1.
代入f′(x)=
1
x
-ax+b
,得f′(x)=
1
x
-ax
+a-1=-
(ax+1)(x-1)
x

当f'(x)>0时,-
(ax+1)(x-1)
x
>0
,由x>0,得(ax+1)(x-1)<0,
又a>0,∴0<x<1,即f(x)在(0,1)上单调递增;
当f'(x)<0时,-
(ax+1)(x-1)
x
<0
,由x>0,得(ax+1)(x-1)>0,
又a>0,∴x>1,即f(x)在(1,+∞)上单调递减.
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以,当x=1时,f(x)的极大值为f(1)=ln1-
1
2
a+b=
a
2
-1

(Ⅱ)在函数f(x)的图象上不存在两点A、B使得它存在“中值伴随切线”.
假设存在两点A(x1,y1),B(x2,y2),不妨设0<x1<x2,则y1=lnx1-
1
2
a
x
2
1
+(a-1)x1
y2=lnx2-
1
2
a
x
2
2
+(a-1)x2
kAB=
y2-y1
x2-x1
=
(lnx2-lnx1)-
1
2
a(
x
2
2
-
x
2
1
)+(a-1)(x2-x1)
x2-x1
=
lnx2-lnx1
x2-x1
-
1
2
a(x1+x2)+a-1

在函数图象x0=
x1+x2
2
处的切线斜率k=f′(x0)=f′(
x1+x2
2
)=
2
x1+x2
-a•
x1+x2
2
+(a-1)

lnx2-lnx1
x2-x1
-
1
2
a(x1+x2)+a-1
=
2
x1+x2
-a•
x1+x2
2
+(a-1)

化简得:
lnx2-lnx1
x2-x1
=
2
x1+x2
ln
x2
x1
=
2(x2-x1)
x2+x1
=
2(
x2
x1
-1)
x2
x1
+1

x2
x1
=t
,则t>1,上式化为:lnt=
2(t-1)
t+1
=2-
4
t+1
,即lnt+
4
t+1
=2

若令g(t)=lnt+
4
t+1
g′(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)2

由t≥1,g'(t)≥0,∴g(t)在[1,+∞)在上单调递增,g(t)>g(1)=2.
这表明在(1,+∞)内不存在t,使得lnt+
4
t+1
=2.
综上所述,在函数f(x)上不存在两点A、B使得它存在“中值伴随切线”.
点评:考查利用导数研究函数单调性的能力,利用导数求函数极值的能力,以及直线斜率的计算公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案