精英家教网 > 高中数学 > 题目详情
18.如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,且AB=AC=$\frac{1}{2}$AA1=2.
( I)求证:DE∥平面ABC;
(Ⅱ)求三棱锥A1-B1DE的体积.

分析 (I)利用线面平行的判定定理证明:DE∥平面ABC;
(Ⅱ)根据三棱锥A1-B1DE的体积=三棱锥E-A1B1D的体积,利用锥体的体积公式求体积.

解答 (I)证明:连结EO,OA.
∵E,O分别为B1C,BC的中点,
∴EO∥BB1
又DA∥BB1,且DA=EO=$\frac{1}{2}$BB1
∴四边形AOED是平行四边形,
即DE∥OA,DE?平面ABC.
∴DE∥平面ABC;
(II)解:∵BC是底面圆O的直径,∴CA⊥AB,
∴CA⊥平面AA1B1B,
∵E是CB1的中点,
∴E到平面AA1B1B的距离=$\frac{1}{2}$CA=1,
∵D是CB1的中点,且AB=AC=$\frac{1}{2}$AA1=2.
∴三棱锥A1-B1DE的体积=三棱锥E-A1B1D的体积=$\frac{1}{3}$×$\frac{1}{2}×2×1×1$=$\frac{1}{3}$.

点评 本题主要考查空间直线与平面平行的判定定理,以及锥体的体积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=1,AB=AC=$\sqrt{2}$,D为BC的中点,过点D作DQ∥AP,且DQ=1,连结QB,QC,QP.
(1)证明:AQ⊥平面PBC;
(2)求二面角B-AQ-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=$\frac{{x}^{2}+ax}{{e}^{x}}$(a∈R).
(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在[2,+∞) 上为减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=1nx-a(x-1)2的单调递增区间是(0,$\frac{1+\sqrt{5}}{2}$)
(1)求实数a的值;
(2)证明:当x>1时,f(x)<x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在(1,+∞)上的可导函数,f′(x)为其导函数,e为自然对数的底数,且xxf′(x)>ef(x)恒成立,则当m>n>0时,有(  )
A.mf(xn)>nf(xmB.mf(xn)<nf(xm
C.mf(xn)=nf(xmD.mf(xn)与nf(xm)大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C、D、E.若AC=6,DE=4,则CD的长为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.AB是⊙O的直径,点C是⊙O上的动点,过动点C的直线VC垂直于⊙O所在的平面,D,E分别是VA,VC的中点.
(1)试判断直线DE与平面VBC的位置关系,并说明理由;
(2)若已知AB=VC=2,当三棱锥V-ABC体积最大时,求点C到面VBA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}是公差为2的等差数列,且a1,a4,a13成等比数列,数列{$\frac{{b}_{n}}{{a}_{n}}$}是首项为1,公比为3的等比数列.
(1)求数列{an}、{bn}的通项公式;
(2)设数列{an+bn}的前n项和Rn,若不等式$\frac{{R}_{n}}{n}$≤λ•3n+n+3对n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{{x}^{\frac{1}{2}},x≥0}\\{-x,x<0}\end{array}\right.$,则f[f(-4)]的值是(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

同步练习册答案