精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=$\frac{{x}^{2}+ax}{{e}^{x}}$(a∈R).
(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)在[2,+∞) 上为减函数,求a的取值范围.

分析 (1)求出函数的导数,求出a的值,计算f′(1),f(1)的值,代入切线方程即可;
(2)令g(x)=-x2+(2-a)x+a,得到当x≥2时a≥$\frac{{-x}^{2}+2x}{x-1}$,令h(x)=$\frac{{-x}^{2}+2x}{x-1}$=-(x-1)+$\frac{1}{x-1}$,通过换元法结合函数的单调性求出h(x)的最大值,从而求出a的范围即可.

解答 解:(1)f′(x)=$\frac{{-x}^{2}+(2-a)x+a}{{e}^{x}}$,
依条件f′(0)=0,
∴a=0,
此时,f(x)=$\frac{{x}^{2}}{{e}^{x}}$,f′(x)=$\frac{-x(x-2)}{{e}^{x}}$,
∴f′(1)=$\frac{1}{e}$,切点(1,$\frac{1}{e}$),
∴切线方程为:x-ey=0;
(2)令g(x)=-x2+(2-a)x+a,
依条件g(x)≤0在[2,+∞)上恒成立,
∴-x2+(2-a)x+a≤0,
∴(x-1)a≥-x2+2x,
当x≥2时a≥$\frac{{-x}^{2}+2x}{x-1}$,
令h(x)=$\frac{{-x}^{2}+2x}{x-1}$=-(x-1)+$\frac{1}{x-1}$,
令x-1=t(t≥1),
∴h(x)=-t+$\frac{1}{t}$=F(t),
F′(t)=-1-$\frac{1}{{t}^{2}}$<0,
∴F(t)在(1,+∞)递减,
∴h(x)max=F(1)=0,
∴a≥0.

点评 本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=lnx与g(x)=a-x($\frac{1}{e}$≤x≤e)的图象上恰好存在唯一一个关于x轴对称的点,则实数a的取值范围为(  )
A.[1,e-1]B.{1}∪($\frac{1}{e}$+1,e-1]C.[1,$\frac{1}{e}$+1]D.($\frac{1}{e}$+1,e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图所示,则该几何体的表面积是$16+6\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了研究某种细菌在特定条件下随时间变化的繁殖情况,得到如表格所示实验数据,若t与y线性相关.
天数t(天)34567
繁殖个数y(千个)568912
(1)求y关于t的回归直线方程;
(2)预测t=8时细菌繁殖的个数.
(回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\sum_{i=1}^{n}{t}_{i}{y}_{i}$=217,其中$\sum_{i=1}^n{{t_i}{y_i}}$=217,$\sum_{i=1}^n{{t_i}^2}$=135)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某品牌服装专卖店为了解保暖衬衣的销售量y(件)与平均气温x(℃)之间的关系,随机统计了连续四旬的销售量与当旬平均气温,其数据如表:
时间 二月上旬二月中旬 二月下旬 三月上旬 
 旬平均气温x(℃) 3 8 12 17
 旬销售量y(件) 55 m 3324
由表中数据算出线性回归方程y=$\widehat{b}$x+$\widehat{a}$中的$\widehat{b}$=-2,样本中心点为(10,38).
(1)表中数据m=40;
(2)气象部门预测三月中旬的平均气温约为22℃,据此估计,该品牌的保暖衬衣在三月中旬的销售量.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.随着我国经济的迅速发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如表:
年份20102011201220132014
时间代号x12345
储蓄存款y (千亿元)567810
(Ⅰ)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)用所求回归方程预测该地区今年的人民币储蓄存款.
附:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$•$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-mx.
(1)求函数f(x)的单调区间;
(2)当m=1时,令g(x)=$\frac{a{x}^{2}+ax}{f(x)}$+lnx,若函数y=g(x)在(0,$\frac{1}{e}$)内有极值,对?t∈(1,+∞),?s∈(0,1),求证:g(t)-g(s)>e+2-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,AA1,BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,且AB=AC=$\frac{1}{2}$AA1=2.
( I)求证:DE∥平面ABC;
(Ⅱ)求三棱锥A1-B1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设抛物线y2=4x上的一点P到y轴的距离是4,则点P到该抛物线焦点的距离为5.

查看答案和解析>>

同步练习册答案