精英家教网 > 高中数学 > 题目详情
14.已知直线l:mx-y=4,若直线l与直线x+m(m-1)y=2垂直,则m的值为0或2;若直线l被圆C:x2+y2-2y-8=0截得的弦长为4,则m的值为±2.

分析 由直线垂直可得m-m(m-1)=0,解方程可得m值;由圆的弦长公式可得m的方程,解方程可得.

解答 解:由直线垂直可得m-m(m-1)=0,解得m=0或m=2;
化圆C为标准方程可得x2+(y-1)2=9,
∴圆心为(0,1),半径r=3,
∵直线l被圆C:x2+y2-2y-8=0截得的弦长为4,
∴圆心到直线l的距离d=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
∴由点到直线的距离公式可得$\sqrt{5}$=$\frac{|-1-4|}{\sqrt{{m}^{2}+1}}$,解得m=±2
故答案为:0或2;±2

点评 本题考查直线的一般式方程和垂直关系,涉及直线和圆的位置关系以及点到直线的距离公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)是在R上的奇函数,而且是(0,+∞)上的减函数,证明:f(x)在(-∞,0)上是减函数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.比较log2π与log${\;}_{\frac{1}{2}}$$\frac{1}{3}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列五个命题:
①函数f(x)=lg($\sqrt{{x}^{2}+1}$-x)是R上的奇函数
②把函数f(x)=2sin2x图象上每个点的横坐标伸长到原来的3倍,然后再向右平移$\frac{π}{6}$个单位,得到的函数解析式可以表示为g(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$)
③化简sin40°(tan10°-$\sqrt{3}$)的最简结果是1
④函数f(x)=2cos2x,若x1,x2满足:对任意x都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为$\frac{π}{2}$
⑤已知△ABC中,$\overrightarrow{AB}$=(cos18°,cos72°),$\overrightarrow{BC}$=(2cos63°,2cos27°),则∠B=135°
其中正确命题的序号是①④⑤(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数y=sin(2x+φ)的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到函数f(x)的图象,且满足f(x)=f(-x),则φ的一个可能取值为(  )
A.$\frac{3π}{4}$B.$\frac{π}{4}$C.0D.-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列{an}中,a5=8,那么S9=72.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知实数x,y满足2x+2y=1,则x+y的最大值是(  )
A.-2B.$\frac{1}{2}$C.$\frac{1}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,b=4,c=7,A=60°,则a的值是(  )
A.6B.$\sqrt{37}$C.$\sqrt{38}$D.$\sqrt{39}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若不等式ax2-bx+c<0的解集是(-2,3),则不等式bx2+ax+c<0的解集是(-3,2).

查看答案和解析>>

同步练习册答案