精英家教网 > 高中数学 > 题目详情
(2005•静安区一模)对于正整数n定义一种满足下列性质的运算“?”:(1)1?1=2;(2)(n+1)?1=n?1+2n+1.则用含n的代数式表示n?1=
n?1=2n+1-2
n?1=2n+1-2
分析:根据题意,由(n+1)?1=n?1+2n+1.可得(n+1)?1-n?1=2n+1.采用叠加法可的(n+1)?1-1?1=2n+1+2n++21+1=2n+1,从而可求n?1
解答:解:由题意,∵(n+1)?1=n?1+2n+1
∴(n+1)?1-n?1=2n+1
∴(n+1)?1-1?1=2n+1+2n++21+1=2n+1
∵1?1=2
∴n?1=n?1=2n+1-2
故答案为n?1=2n+1-2
点评:本题的考点是数列递推式,主要考查数列的通项,关键是理解新定义.利用叠加法求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2005•静安区一模)若函数y=f(x) (x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=|x|.则函数y=f(x)的图象与函数y=log4|x|的图象的交点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)若在同一坐标系内函数y=f(x)与y=x3的图象关于直线y=x对称,则f(x)=
3x
3x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)已知函数f(x)=sin(ωx)•cos(ωx)(ω>0)(x∈R)的最小正周期为π,则ω=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)若f(θ)=sinθ+2cosθ=
5
sin(θ+?)(-
π
2
<?<
π
2
)
,则?=
arccos
5
5
,或(arctan2)
arccos
5
5
,或(arctan2)
.(用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•静安区一模)如图,正四棱锥S-ABCD的侧棱长是底面边长的2倍,则异面直线SA与BC所成角的大小是
arccos
1
4
arccos
1
4
(用反三角函数表示).

查看答案和解析>>

同步练习册答案