精英家教网 > 高中数学 > 题目详情
2.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为$\overline{x}$和s2,以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分
别为5,8.

分析 根据已知中甲组数据的中位数为15,乙组数据的平均数为16.8,构造方程,可得x,y的值.

解答 解:由甲组数据的中位数为15,
可得未知数据应为15,即x=5;
乙组数据的平均数为16.8,
即$\frac{1}{5}$(9+15+10+y+18+24)=16.8,
解得:y=8,
故答案为:5,8

点评 本题考查的知识点是茎叶图,平均数与中位数,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)+$\frac{5}{4}$.
(1)求f(x)的最小正周期及单调增区间;
(2)求f(x)的图象的对称轴方程和对称中心;
(3)求f(x)的最小值及取得最小值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2017(0)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=loga(x-3)+3(a>0且a≠1)恒过定点(4,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某班共有学生53人,学号分别为1~53号,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号的同学在样本中,那么样本中还有一个同学的学号是(  )
A.16B.10C.53D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.4月15日我校组织高一年级同学听了一次法制方面的专题报告.为了解同学们对法制知识的掌握情况,学生会对20名学生做了一项调查测试,这20名同学的测试成绩(单位:分)的频率分布直方图如图:
(1)求频率分布直方图中a的值,并估计本次测试的中位数和平均成绩;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an},如果a4=7,a8=15.
(1)求数列{an}的通项公式;
(2)令bn=2n+an,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某班50名学生一次调研考试的数学成绩(满分:100分)的频率分布直方图如图所示.
(Ⅰ)根据频率分布直方图,完成以下频数分布表:
成绩[60,70)[70,80)[80,90)[90,100)
频数    
(Ⅱ)用分层抽样的方法从成绩在[70,80)和[90,100)的学生中抽取4人,求成绩在[70,80)和[90,100)中抽取的人数;
(Ⅲ)估计这50名学生的数学成绩的平均分及方差(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,直线l的参数方程$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为:ρ=4cosθ.
(I)求直线l的极坐标方程; 
(II)求直线l与曲线C交点的极坐标(ρ>0,0≤θ<2π).

查看答案和解析>>

同步练习册答案