精英家教网 > 高中数学 > 题目详情
7.4月15日我校组织高一年级同学听了一次法制方面的专题报告.为了解同学们对法制知识的掌握情况,学生会对20名学生做了一项调查测试,这20名同学的测试成绩(单位:分)的频率分布直方图如图:
(1)求频率分布直方图中a的值,并估计本次测试的中位数和平均成绩;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.

分析 (1)由频率分布直方图中小矩形面积和为1,能求出a,由此能估计本次测试的中位数和平均成绩.
(2)利用频率分布直方图能求出成绩落在[50,60)与[60,70)中的学生人数.
(3)成绩在[50,70)的学生有5人,其中,成绩落在[50,60)中的学生人数有2人,成绩落在[60,70)中的学生人数有3人.从成绩在[50,70)的学生中任选2人,基本事件总数n=${C}_{5}^{2}$=10,此2人的成绩都在[60,70)中包含的基本事件个数m=${C}_{3}^{2}$=3,由此能求出此2人的成绩都在[60,70)中的概率.

解答 解:(1)由频率分布直方图中小矩形面积和为1,
得:(2a×2+3a+7a+6a)×10=1,
解得a=0.005,
∵[50,70)的频率为(2×0.005+3×0.005)×10=0.25,
[70,80)的频率为7×0.005×10=0.35,
∴中位数是70+$\frac{0.5-0.25}{0.35}×10$=$\frac{540}{7}$,
平均数是:55×0.01×10+65×0.015×10+75×0.035×10+85×0.30×10+95×0.010×10=76.5.
(2)成绩落在[50,60)中的学生人数有20×0.01×10=2人,
成绩落在[60,70)中的学生人数有20×0.015×10=3人.
(3)成绩在[50,70)的学生有5人,
其中,成绩落在[50,60)中的学生人数有2人,
成绩落在[60,70)中的学生人数有3人.
从成绩在[50,70)的学生中任选2人,
基本事件总数n=${C}_{5}^{2}$=10,
此2人的成绩都在[60,70)中包含的基本事件个数m=${C}_{3}^{2}$=3,
∴此2人的成绩都在[60,70)中的概率p=$\frac{m}{n}=\frac{3}{10}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知圆C的极坐标方程为ρ=4cosθ-2sinθ,圆心为C点A($\sqrt{2}$,$\frac{π}{4}$),则线段AC的长为(  )
A.$\sqrt{5}$B.5C.$\frac{\sqrt{5}}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=cos2x+asinx+$\frac{5}{8}$a+1(0≤x≤$\frac{π}{2}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若α∈(0,2π),则符合不等式sinα>cosα的α取值范围是(  )
A.($\frac{π}{4}$,$\frac{5π}{4}$)B.($\frac{π}{2}$,π)C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{π}{4}$,$\frac{π}{2}$)∪(π,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为$\overline{x}$和s2,以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分
别为5,8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{mx}{{{x^2}+n}}$(m,n∈R)在x=1处取得极值2.
(1)求函数f(x)的解析式;
(2)设函数g(x)=ax-lnx,若对任意的${x_1}∈[\frac{1}{2},2]$,总存在唯一的x2∈[$\frac{1}{e^2}$,e](e为自然对数的底数)使得g(x2)=f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,$A=\frac{π}{3},AC=4,BC=2\sqrt{3}$,则△ABC的面积为(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2017年某市街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题.然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等.为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如下表:
年龄[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)
受访人数56159105
支持发展共享单车人数4512973
(Ⅰ)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系:
年龄低于35岁年龄不低于35岁合计
支持
不支持
合计
(Ⅱ)若对年龄在[15,20)的被调查人中随机选取两人,对年龄在[20,25)的被调查人中随机选取一人进行调查,求选中的3人中支持发展共享单车的人数为2人的概率.
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2-3t}\\{y=-2+4t}\end{array}\right.$(t为参数).以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcosθ=tanθ.
(Ⅰ)求曲线C1的普通方程与曲线C2的直角坐标方程;
(Ⅱ)若C1与C2交于A,B两点,点P的极坐标为$({2\sqrt{2},-\frac{π}{4}})$,求$\frac{1}{|PA|}+\frac{1}{|PB|}$的值.

查看答案和解析>>

同步练习册答案