精英家教网 > 高中数学 > 题目详情
15.若α∈(0,2π),则符合不等式sinα>cosα的α取值范围是(  )
A.($\frac{π}{4}$,$\frac{5π}{4}$)B.($\frac{π}{2}$,π)C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{π}{4}$,$\frac{π}{2}$)∪(π,$\frac{3π}{4}$)

分析 设α的终边与单位圆交于点P(x,y),则y=sinα,x=cosα,进而可将sinα>cosα化为y-x>0,利用三角函数线知识及α∈(0,2π),可得α的取值范围.

解答 解:设α的终边与单位圆交于点P(x,y),
则y=sinα,x=cosα,
不等式sinα>cosα,即sinα-cosα>0,即y-x>0,
满足条件的α的终边如下图所示:

又∵α∈(0,2π),
∴α∈($\frac{π}{4}$,$\frac{5π}{4}$),
故选:A.

点评 本题考查的知识点是三角函数线,数形结合,熟练掌握三角函数的定义是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(-1,2),则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.0B.4C.-3D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(Ⅰ)已知a>0,求证:$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}}$-$\sqrt{2}$≥a+$\frac{1}{a}$-2
(Ⅱ) 已知p,q,r都是正数,求证:关于x的三个方程8x2-8$\sqrt{p}$x+q=0,8x2-8$\sqrt{q}$x+r=0,8x2-8$\sqrt{r}$x+p=0至少有一个方程有两个不相等的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z1=7-6i,z2=4-7i,则z1-z2=(  )
A.3+iB.3-iC.11-13iD.3-13i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=loga(x-3)+3(a>0且a≠1)恒过定点(4,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若cos($\frac{π}{3}$-θ)=$\frac{1}{3}$,则cos($\frac{2π}{3}$+θ)-sin2(θ-$\frac{π}{3}$)=-$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.4月15日我校组织高一年级同学听了一次法制方面的专题报告.为了解同学们对法制知识的掌握情况,学生会对20名学生做了一项调查测试,这20名同学的测试成绩(单位:分)的频率分布直方图如图:
(1)求频率分布直方图中a的值,并估计本次测试的中位数和平均成绩;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.A、B、C、D、E、F六人并排站成一排,如果A、B必须相邻且B在A的左边,那么不同的排法种数为(  )
A.720B.240C.120D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,左、右顶点分别为A,B.以F1F2为直径的圆O过椭圆E的上顶点D,直线DB与圆O相交得到的弦长为$\frac{{2\sqrt{3}}}{3}$.设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点为O.
(I)求椭圆E的方程;
(II)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.

查看答案和解析>>

同步练习册答案